New Cluster Analysis Method for Quantitative Dynamic Contrast‐Enhanced MRI Assessing Tumor Heterogeneity Induced by a Tumor‐Microenvironmental Ameliorator (E7130) Treatment to a Breast Cancer Mouse Model

Background Dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) can provide insight into tumor perfusion. However, a method that can quantitatively measure the intra‐tumor distribution of tumor voxel clusters with a distinct range of Ktrans and ve values remains insufficiently explored. Hy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2022-12, Vol.56 (6), p.1820-1831
Hauptverfasser: Makihara, Kazuyuki, Yamaguchi, Masayuki, Ito, Ken, Sakaguchi, Kazuya, Hori, Yusaku, Semba, Taro, Funahashi, Yasuhiro, Fujii, Hirofumi, Terada, Yasuhiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1831
container_issue 6
container_start_page 1820
container_title Journal of magnetic resonance imaging
container_volume 56
creator Makihara, Kazuyuki
Yamaguchi, Masayuki
Ito, Ken
Sakaguchi, Kazuya
Hori, Yusaku
Semba, Taro
Funahashi, Yasuhiro
Fujii, Hirofumi
Terada, Yasuhiko
description Background Dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) can provide insight into tumor perfusion. However, a method that can quantitatively measure the intra‐tumor distribution of tumor voxel clusters with a distinct range of Ktrans and ve values remains insufficiently explored. Hypothesis Two‐dimensional cluster analysis may quantify the distribution of a tumor voxel subregion with a distinct range of Ktrans and ve values in human breast cancer xenografts. Study Type Prospective longitudinal study. Animal Model Twenty‐two female athymic nude mice with MCF‐7 xenograft, treated with E7130, a tumor‐microenvironmental ameliorator, or saline. Field Strength/Sequence 9.4 Tesla, turbo rapid acquisition with relaxation enhancement, and spoiled gradient‐echo sequences. Assessment We performed two‐dimensional k‐means clustering to identify tumor voxel clusters with a distinct range of Ktrans and ve values on Days 0, 2, and 5 after treatment, calculated the ratio of the number of tumor voxels in each cluster to the total number of tumor voxels, and measured the normalized distances defined as the ratio of the distance between each tumor voxel and the nearest tumor margin to a tumor radius. Statistical Tests Unpaired t‐tests, Dunnett's multiple comparison tests, and Chi‐squared test were used. Results The largest and second largest clusters constituted 44.4% and 27.5% of all tumor voxels with cluster centroid values of Ktrans at 0.040 min−1 and 0.116 min−1, and ve at 0.131 and 0.201, respectively. At baseline (Day 0), the average normalized distances for the largest and second largest clusters were 0.33 and 0.24, respectively. E7130‐treated group showed the normalized distance of the initial largest cluster decreasing to 0.25, while that of the second largest cluster increasing to 0.31. Saline‐treated group showed no change. Data Conclusion A two‐dimensional cluster analysis might quantify the spatial distribution of a tumor subregion with a distinct range of Ktrans and ve values. Level of Evidence 1 Technical Efficacy Stage 1
doi_str_mv 10.1002/jmri.28226
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2661085391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2734469016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4236-cb5f0a2dbcde0feaea8a2ca752b39c5937e03b1491712bc627ffddb7750f1bdd3</originalsourceid><addsrcrecordid>eNp9kctu1DAUhiMEoqWw4QGQJTYFKcWXOJ4shzDQQR0QaFhHjn3SepTYxXZaZccj8Ga8A0-CQwoLFmx8kb_zHev8WfaU4DOCMX11GLw5oytKy3vZMeGU5pSvyvvpjDnLyQqLo-xRCAeMcVUV_GF2xDinhWD4OPvxAW5R3Y8hgkdrK_spmIB2EK-cRp3z6NMobTRRRnMD6M1k5WAUqp2NXob489v3jb2SVoFGu89btA4BQjD2Eu3HIRWfQ9K6S7Bg4oS2Vo8z2U5ILkCq3xnlHdgb450dwEbZo_UAvXFexmQ43QjC8Au09yDj_I6iS9Wv0zVEVM-tPdq5MUBaNfSPswed7AM8udtPsi9vN_v6PL_4-G5bry9yVVBW5qrlHZZUt0oD7kCCXEmqpOC0ZZXiFROAWUuKighCW1VS0XVat0Jw3JFWa3aSnS7ea---jhBiM5igoO-lhfSbhpYlwSvOKpLQ5_-gBzf6NOpECVYUZYVJmaiXC5XGEYKHrrn2ZpB-aghu5pibOebmd8wJfnanHNsB9F_0T64JIAtwa3qY_qNq3qfcFukv0Pi4PA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734469016</pqid></control><display><type>article</type><title>New Cluster Analysis Method for Quantitative Dynamic Contrast‐Enhanced MRI Assessing Tumor Heterogeneity Induced by a Tumor‐Microenvironmental Ameliorator (E7130) Treatment to a Breast Cancer Mouse Model</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Makihara, Kazuyuki ; Yamaguchi, Masayuki ; Ito, Ken ; Sakaguchi, Kazuya ; Hori, Yusaku ; Semba, Taro ; Funahashi, Yasuhiro ; Fujii, Hirofumi ; Terada, Yasuhiko</creator><creatorcontrib>Makihara, Kazuyuki ; Yamaguchi, Masayuki ; Ito, Ken ; Sakaguchi, Kazuya ; Hori, Yusaku ; Semba, Taro ; Funahashi, Yasuhiro ; Fujii, Hirofumi ; Terada, Yasuhiko</creatorcontrib><description>Background Dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) can provide insight into tumor perfusion. However, a method that can quantitatively measure the intra‐tumor distribution of tumor voxel clusters with a distinct range of Ktrans and ve values remains insufficiently explored. Hypothesis Two‐dimensional cluster analysis may quantify the distribution of a tumor voxel subregion with a distinct range of Ktrans and ve values in human breast cancer xenografts. Study Type Prospective longitudinal study. Animal Model Twenty‐two female athymic nude mice with MCF‐7 xenograft, treated with E7130, a tumor‐microenvironmental ameliorator, or saline. Field Strength/Sequence 9.4 Tesla, turbo rapid acquisition with relaxation enhancement, and spoiled gradient‐echo sequences. Assessment We performed two‐dimensional k‐means clustering to identify tumor voxel clusters with a distinct range of Ktrans and ve values on Days 0, 2, and 5 after treatment, calculated the ratio of the number of tumor voxels in each cluster to the total number of tumor voxels, and measured the normalized distances defined as the ratio of the distance between each tumor voxel and the nearest tumor margin to a tumor radius. Statistical Tests Unpaired t‐tests, Dunnett's multiple comparison tests, and Chi‐squared test were used. Results The largest and second largest clusters constituted 44.4% and 27.5% of all tumor voxels with cluster centroid values of Ktrans at 0.040 min−1 and 0.116 min−1, and ve at 0.131 and 0.201, respectively. At baseline (Day 0), the average normalized distances for the largest and second largest clusters were 0.33 and 0.24, respectively. E7130‐treated group showed the normalized distance of the initial largest cluster decreasing to 0.25, while that of the second largest cluster increasing to 0.31. Saline‐treated group showed no change. Data Conclusion A two‐dimensional cluster analysis might quantify the spatial distribution of a tumor subregion with a distinct range of Ktrans and ve values. Level of Evidence 1 Technical Efficacy Stage 1</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.28226</identifier><identifier>PMID: 35524730</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Animal models ; Animals ; anti‐angiogenic drug ; Breast cancer ; breast cancer mouse model ; Breast Neoplasms - diagnostic imaging ; Breast Neoplasms - pathology ; Centroids ; Cluster Analysis ; Clustering ; Contrast Media ; DCE‐MRI ; Dimensional analysis ; Female ; Field strength ; Heterogeneity ; Humans ; Longitudinal Studies ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Mice ; Mice, Nude ; Prospective Studies ; Spatial distribution ; Statistical analysis ; Statistical tests ; tumor heterogeneity ; Tumors ; Xenografts ; Xenotransplantation</subject><ispartof>Journal of magnetic resonance imaging, 2022-12, Vol.56 (6), p.1820-1831</ispartof><rights>2022 International Society for Magnetic Resonance in Medicine.</rights><rights>2022 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4236-cb5f0a2dbcde0feaea8a2ca752b39c5937e03b1491712bc627ffddb7750f1bdd3</citedby><cites>FETCH-LOGICAL-c4236-cb5f0a2dbcde0feaea8a2ca752b39c5937e03b1491712bc627ffddb7750f1bdd3</cites><orcidid>0000-0002-8583-3057</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.28226$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.28226$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35524730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Makihara, Kazuyuki</creatorcontrib><creatorcontrib>Yamaguchi, Masayuki</creatorcontrib><creatorcontrib>Ito, Ken</creatorcontrib><creatorcontrib>Sakaguchi, Kazuya</creatorcontrib><creatorcontrib>Hori, Yusaku</creatorcontrib><creatorcontrib>Semba, Taro</creatorcontrib><creatorcontrib>Funahashi, Yasuhiro</creatorcontrib><creatorcontrib>Fujii, Hirofumi</creatorcontrib><creatorcontrib>Terada, Yasuhiko</creatorcontrib><title>New Cluster Analysis Method for Quantitative Dynamic Contrast‐Enhanced MRI Assessing Tumor Heterogeneity Induced by a Tumor‐Microenvironmental Ameliorator (E7130) Treatment to a Breast Cancer Mouse Model</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background Dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) can provide insight into tumor perfusion. However, a method that can quantitatively measure the intra‐tumor distribution of tumor voxel clusters with a distinct range of Ktrans and ve values remains insufficiently explored. Hypothesis Two‐dimensional cluster analysis may quantify the distribution of a tumor voxel subregion with a distinct range of Ktrans and ve values in human breast cancer xenografts. Study Type Prospective longitudinal study. Animal Model Twenty‐two female athymic nude mice with MCF‐7 xenograft, treated with E7130, a tumor‐microenvironmental ameliorator, or saline. Field Strength/Sequence 9.4 Tesla, turbo rapid acquisition with relaxation enhancement, and spoiled gradient‐echo sequences. Assessment We performed two‐dimensional k‐means clustering to identify tumor voxel clusters with a distinct range of Ktrans and ve values on Days 0, 2, and 5 after treatment, calculated the ratio of the number of tumor voxels in each cluster to the total number of tumor voxels, and measured the normalized distances defined as the ratio of the distance between each tumor voxel and the nearest tumor margin to a tumor radius. Statistical Tests Unpaired t‐tests, Dunnett's multiple comparison tests, and Chi‐squared test were used. Results The largest and second largest clusters constituted 44.4% and 27.5% of all tumor voxels with cluster centroid values of Ktrans at 0.040 min−1 and 0.116 min−1, and ve at 0.131 and 0.201, respectively. At baseline (Day 0), the average normalized distances for the largest and second largest clusters were 0.33 and 0.24, respectively. E7130‐treated group showed the normalized distance of the initial largest cluster decreasing to 0.25, while that of the second largest cluster increasing to 0.31. Saline‐treated group showed no change. Data Conclusion A two‐dimensional cluster analysis might quantify the spatial distribution of a tumor subregion with a distinct range of Ktrans and ve values. Level of Evidence 1 Technical Efficacy Stage 1</description><subject>Animal models</subject><subject>Animals</subject><subject>anti‐angiogenic drug</subject><subject>Breast cancer</subject><subject>breast cancer mouse model</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Breast Neoplasms - pathology</subject><subject>Centroids</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Contrast Media</subject><subject>DCE‐MRI</subject><subject>Dimensional analysis</subject><subject>Female</subject><subject>Field strength</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Longitudinal Studies</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Prospective Studies</subject><subject>Spatial distribution</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>tumor heterogeneity</subject><subject>Tumors</subject><subject>Xenografts</subject><subject>Xenotransplantation</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctu1DAUhiMEoqWw4QGQJTYFKcWXOJ4shzDQQR0QaFhHjn3SepTYxXZaZccj8Ga8A0-CQwoLFmx8kb_zHev8WfaU4DOCMX11GLw5oytKy3vZMeGU5pSvyvvpjDnLyQqLo-xRCAeMcVUV_GF2xDinhWD4OPvxAW5R3Y8hgkdrK_spmIB2EK-cRp3z6NMobTRRRnMD6M1k5WAUqp2NXob489v3jb2SVoFGu89btA4BQjD2Eu3HIRWfQ9K6S7Bg4oS2Vo8z2U5ILkCq3xnlHdgb450dwEbZo_UAvXFexmQ43QjC8Au09yDj_I6iS9Wv0zVEVM-tPdq5MUBaNfSPswed7AM8udtPsi9vN_v6PL_4-G5bry9yVVBW5qrlHZZUt0oD7kCCXEmqpOC0ZZXiFROAWUuKighCW1VS0XVat0Jw3JFWa3aSnS7ea---jhBiM5igoO-lhfSbhpYlwSvOKpLQ5_-gBzf6NOpECVYUZYVJmaiXC5XGEYKHrrn2ZpB-aghu5pibOebmd8wJfnanHNsB9F_0T64JIAtwa3qY_qNq3qfcFukv0Pi4PA</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Makihara, Kazuyuki</creator><creator>Yamaguchi, Masayuki</creator><creator>Ito, Ken</creator><creator>Sakaguchi, Kazuya</creator><creator>Hori, Yusaku</creator><creator>Semba, Taro</creator><creator>Funahashi, Yasuhiro</creator><creator>Fujii, Hirofumi</creator><creator>Terada, Yasuhiko</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8583-3057</orcidid></search><sort><creationdate>202212</creationdate><title>New Cluster Analysis Method for Quantitative Dynamic Contrast‐Enhanced MRI Assessing Tumor Heterogeneity Induced by a Tumor‐Microenvironmental Ameliorator (E7130) Treatment to a Breast Cancer Mouse Model</title><author>Makihara, Kazuyuki ; Yamaguchi, Masayuki ; Ito, Ken ; Sakaguchi, Kazuya ; Hori, Yusaku ; Semba, Taro ; Funahashi, Yasuhiro ; Fujii, Hirofumi ; Terada, Yasuhiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4236-cb5f0a2dbcde0feaea8a2ca752b39c5937e03b1491712bc627ffddb7750f1bdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>anti‐angiogenic drug</topic><topic>Breast cancer</topic><topic>breast cancer mouse model</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Breast Neoplasms - pathology</topic><topic>Centroids</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Contrast Media</topic><topic>DCE‐MRI</topic><topic>Dimensional analysis</topic><topic>Female</topic><topic>Field strength</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Longitudinal Studies</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Prospective Studies</topic><topic>Spatial distribution</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>tumor heterogeneity</topic><topic>Tumors</topic><topic>Xenografts</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makihara, Kazuyuki</creatorcontrib><creatorcontrib>Yamaguchi, Masayuki</creatorcontrib><creatorcontrib>Ito, Ken</creatorcontrib><creatorcontrib>Sakaguchi, Kazuya</creatorcontrib><creatorcontrib>Hori, Yusaku</creatorcontrib><creatorcontrib>Semba, Taro</creatorcontrib><creatorcontrib>Funahashi, Yasuhiro</creatorcontrib><creatorcontrib>Fujii, Hirofumi</creatorcontrib><creatorcontrib>Terada, Yasuhiko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makihara, Kazuyuki</au><au>Yamaguchi, Masayuki</au><au>Ito, Ken</au><au>Sakaguchi, Kazuya</au><au>Hori, Yusaku</au><au>Semba, Taro</au><au>Funahashi, Yasuhiro</au><au>Fujii, Hirofumi</au><au>Terada, Yasuhiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Cluster Analysis Method for Quantitative Dynamic Contrast‐Enhanced MRI Assessing Tumor Heterogeneity Induced by a Tumor‐Microenvironmental Ameliorator (E7130) Treatment to a Breast Cancer Mouse Model</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2022-12</date><risdate>2022</risdate><volume>56</volume><issue>6</issue><spage>1820</spage><epage>1831</epage><pages>1820-1831</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Background Dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) can provide insight into tumor perfusion. However, a method that can quantitatively measure the intra‐tumor distribution of tumor voxel clusters with a distinct range of Ktrans and ve values remains insufficiently explored. Hypothesis Two‐dimensional cluster analysis may quantify the distribution of a tumor voxel subregion with a distinct range of Ktrans and ve values in human breast cancer xenografts. Study Type Prospective longitudinal study. Animal Model Twenty‐two female athymic nude mice with MCF‐7 xenograft, treated with E7130, a tumor‐microenvironmental ameliorator, or saline. Field Strength/Sequence 9.4 Tesla, turbo rapid acquisition with relaxation enhancement, and spoiled gradient‐echo sequences. Assessment We performed two‐dimensional k‐means clustering to identify tumor voxel clusters with a distinct range of Ktrans and ve values on Days 0, 2, and 5 after treatment, calculated the ratio of the number of tumor voxels in each cluster to the total number of tumor voxels, and measured the normalized distances defined as the ratio of the distance between each tumor voxel and the nearest tumor margin to a tumor radius. Statistical Tests Unpaired t‐tests, Dunnett's multiple comparison tests, and Chi‐squared test were used. Results The largest and second largest clusters constituted 44.4% and 27.5% of all tumor voxels with cluster centroid values of Ktrans at 0.040 min−1 and 0.116 min−1, and ve at 0.131 and 0.201, respectively. At baseline (Day 0), the average normalized distances for the largest and second largest clusters were 0.33 and 0.24, respectively. E7130‐treated group showed the normalized distance of the initial largest cluster decreasing to 0.25, while that of the second largest cluster increasing to 0.31. Saline‐treated group showed no change. Data Conclusion A two‐dimensional cluster analysis might quantify the spatial distribution of a tumor subregion with a distinct range of Ktrans and ve values. Level of Evidence 1 Technical Efficacy Stage 1</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>35524730</pmid><doi>10.1002/jmri.28226</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8583-3057</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2022-12, Vol.56 (6), p.1820-1831
issn 1053-1807
1522-2586
language eng
recordid cdi_proquest_miscellaneous_2661085391
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animal models
Animals
anti‐angiogenic drug
Breast cancer
breast cancer mouse model
Breast Neoplasms - diagnostic imaging
Breast Neoplasms - pathology
Centroids
Cluster Analysis
Clustering
Contrast Media
DCE‐MRI
Dimensional analysis
Female
Field strength
Heterogeneity
Humans
Longitudinal Studies
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Mice
Mice, Nude
Prospective Studies
Spatial distribution
Statistical analysis
Statistical tests
tumor heterogeneity
Tumors
Xenografts
Xenotransplantation
title New Cluster Analysis Method for Quantitative Dynamic Contrast‐Enhanced MRI Assessing Tumor Heterogeneity Induced by a Tumor‐Microenvironmental Ameliorator (E7130) Treatment to a Breast Cancer Mouse Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Cluster%20Analysis%20Method%20for%20Quantitative%20Dynamic%20Contrast%E2%80%90Enhanced%20MRI%20Assessing%20Tumor%20Heterogeneity%20Induced%20by%20a%20Tumor%E2%80%90Microenvironmental%20Ameliorator%20(E7130)%20Treatment%20to%20a%20Breast%20Cancer%20Mouse%20Model&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Makihara,%20Kazuyuki&rft.date=2022-12&rft.volume=56&rft.issue=6&rft.spage=1820&rft.epage=1831&rft.pages=1820-1831&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.28226&rft_dat=%3Cproquest_cross%3E2734469016%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734469016&rft_id=info:pmid/35524730&rfr_iscdi=true