Recovering wetland biogeomorphic feedbacks to restore the world's biotic carbon hotspots

Biogeomorphic wetlands cover 1% of Earth's surface but store 20% of ecosystem organic carbon. This disproportional share is fueled by high carbon sequestration rates and effective storage in peatlands, mangroves, salt marshes, and seagrass meadows, which greatly exceed those of oceanic and fore...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2022-05, Vol.376 (6593), p.eabn1479-eabn1479
Hauptverfasser: Temmink, Ralph J M, Lamers, Leon P M, Angelini, Christine, Bouma, Tjeerd J, Fritz, Christian, van de Koppel, Johan, Lexmond, Robin, Rietkerk, Max, Silliman, Brian R, Joosten, Hans, van der Heide, Tjisse
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page eabn1479
container_issue 6593
container_start_page eabn1479
container_title Science (American Association for the Advancement of Science)
container_volume 376
creator Temmink, Ralph J M
Lamers, Leon P M
Angelini, Christine
Bouma, Tjeerd J
Fritz, Christian
van de Koppel, Johan
Lexmond, Robin
Rietkerk, Max
Silliman, Brian R
Joosten, Hans
van der Heide, Tjisse
description Biogeomorphic wetlands cover 1% of Earth's surface but store 20% of ecosystem organic carbon. This disproportional share is fueled by high carbon sequestration rates and effective storage in peatlands, mangroves, salt marshes, and seagrass meadows, which greatly exceed those of oceanic and forest ecosystems. Here, we review how feedbacks between geomorphology and landscape-building vegetation underlie these qualities and how feedback disruption can switch wetlands from carbon sinks into sources. Currently, human activities are driving rapid declines in the area of major carbon-storing wetlands (1% annually). Our findings highlight the urgency to stop through conservation ongoing losses and to reestablish landscape-forming feedbacks through restoration innovations that recover the role of biogeomorphic wetlands as the world's biotic carbon hotspots.
doi_str_mv 10.1126/science.abn1479
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2661084391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2659686235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-eb175a5a8cc626a7213f557c216529ed2944eedf86b2aeaa40b60ad6f91bb7b43</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMo7rp69iYFD3rpbj6atDnK4hcIgih4K0k63e3aNjVpXfz3ZtnqwcMwh3lmeOdB6JzgOSFULLypoDUwV7olSSoP0JRgyWNJMTtEU4yZiDOc8gk68X6DcZhJdowmjHNCpEim6P0FjP0CV7WraAt9rdoi0pVdgW2s69aViUqAQivz4aPeRg58bx1E_RqirXV1ceV3eB84o5y2bbS2ve9CnaKjUtUezsY-Q293t6_Lh_jp-f5xefMUGyZEH4MmKVdcZcYIKlRKCSs5Tw0lglMJBZVJEgKUmdBUgVIJ1gKrQpSSaJ3qhM3Q9f5u5-znEOLlTeUN1OETsIPPqRAEZwmTJKCX_9CNHVwb0gWKS5EJynigFnvKOOu9gzLvXNUo950TnO-k56P0fJQeNi7Gu4NuoPjjfy2zHxt1gK0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659686235</pqid></control><display><type>article</type><title>Recovering wetland biogeomorphic feedbacks to restore the world's biotic carbon hotspots</title><source>American Association for the Advancement of Science</source><source>MEDLINE</source><creator>Temmink, Ralph J M ; Lamers, Leon P M ; Angelini, Christine ; Bouma, Tjeerd J ; Fritz, Christian ; van de Koppel, Johan ; Lexmond, Robin ; Rietkerk, Max ; Silliman, Brian R ; Joosten, Hans ; van der Heide, Tjisse</creator><creatorcontrib>Temmink, Ralph J M ; Lamers, Leon P M ; Angelini, Christine ; Bouma, Tjeerd J ; Fritz, Christian ; van de Koppel, Johan ; Lexmond, Robin ; Rietkerk, Max ; Silliman, Brian R ; Joosten, Hans ; van der Heide, Tjisse</creatorcontrib><description>Biogeomorphic wetlands cover 1% of Earth's surface but store 20% of ecosystem organic carbon. This disproportional share is fueled by high carbon sequestration rates and effective storage in peatlands, mangroves, salt marshes, and seagrass meadows, which greatly exceed those of oceanic and forest ecosystems. Here, we review how feedbacks between geomorphology and landscape-building vegetation underlie these qualities and how feedback disruption can switch wetlands from carbon sinks into sources. Currently, human activities are driving rapid declines in the area of major carbon-storing wetlands (1% annually). Our findings highlight the urgency to stop through conservation ongoing losses and to reestablish landscape-forming feedbacks through restoration innovations that recover the role of biogeomorphic wetlands as the world's biotic carbon hotspots.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abn1479</identifier><identifier>PMID: 35511964</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Anthropogenic factors ; Biota ; Carbon ; Carbon dioxide ; Carbon Sequestration ; Carbon sinks ; Carbon sources ; Climate ; Climate change ; Earth surface ; Ecology ; Ecosystem ; Ecosystem restoration ; Ecosystems ; Emissions ; Environmental restoration ; Feedback ; Forest ecosystems ; Geomorphology ; Global climate ; Global warming ; Harbors ; Human influences ; Humans ; Landforms ; Landscape ; Mangroves ; Marine ecosystems ; Oceans ; Organic matter ; Paris Agreement ; Peatlands ; Salt marshes ; Storage ; Storage capacity ; Terrestrial ecosystems ; Vegetation ; Wetlands</subject><ispartof>Science (American Association for the Advancement of Science), 2022-05, Vol.376 (6593), p.eabn1479-eabn1479</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-eb175a5a8cc626a7213f557c216529ed2944eedf86b2aeaa40b60ad6f91bb7b43</citedby><cites>FETCH-LOGICAL-c366t-eb175a5a8cc626a7213f557c216529ed2944eedf86b2aeaa40b60ad6f91bb7b43</cites><orcidid>0000-0001-9467-9875 ; 0000-0002-3664-8904 ; 0000-0001-7824-7546 ; 0000-0001-6360-650X ; 0000-0001-8694-5811 ; 0000-0003-2687-9749 ; 0000-0002-2698-3848 ; 0000-0003-3769-2154 ; 0000-0002-6669-5269 ; 0000-0002-0103-4275 ; 0000-0003-3926-5615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35511964$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Temmink, Ralph J M</creatorcontrib><creatorcontrib>Lamers, Leon P M</creatorcontrib><creatorcontrib>Angelini, Christine</creatorcontrib><creatorcontrib>Bouma, Tjeerd J</creatorcontrib><creatorcontrib>Fritz, Christian</creatorcontrib><creatorcontrib>van de Koppel, Johan</creatorcontrib><creatorcontrib>Lexmond, Robin</creatorcontrib><creatorcontrib>Rietkerk, Max</creatorcontrib><creatorcontrib>Silliman, Brian R</creatorcontrib><creatorcontrib>Joosten, Hans</creatorcontrib><creatorcontrib>van der Heide, Tjisse</creatorcontrib><title>Recovering wetland biogeomorphic feedbacks to restore the world's biotic carbon hotspots</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Biogeomorphic wetlands cover 1% of Earth's surface but store 20% of ecosystem organic carbon. This disproportional share is fueled by high carbon sequestration rates and effective storage in peatlands, mangroves, salt marshes, and seagrass meadows, which greatly exceed those of oceanic and forest ecosystems. Here, we review how feedbacks between geomorphology and landscape-building vegetation underlie these qualities and how feedback disruption can switch wetlands from carbon sinks into sources. Currently, human activities are driving rapid declines in the area of major carbon-storing wetlands (1% annually). Our findings highlight the urgency to stop through conservation ongoing losses and to reestablish landscape-forming feedbacks through restoration innovations that recover the role of biogeomorphic wetlands as the world's biotic carbon hotspots.</description><subject>Anthropogenic factors</subject><subject>Biota</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon Sequestration</subject><subject>Carbon sinks</subject><subject>Carbon sources</subject><subject>Climate</subject><subject>Climate change</subject><subject>Earth surface</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>Ecosystem restoration</subject><subject>Ecosystems</subject><subject>Emissions</subject><subject>Environmental restoration</subject><subject>Feedback</subject><subject>Forest ecosystems</subject><subject>Geomorphology</subject><subject>Global climate</subject><subject>Global warming</subject><subject>Harbors</subject><subject>Human influences</subject><subject>Humans</subject><subject>Landforms</subject><subject>Landscape</subject><subject>Mangroves</subject><subject>Marine ecosystems</subject><subject>Oceans</subject><subject>Organic matter</subject><subject>Paris Agreement</subject><subject>Peatlands</subject><subject>Salt marshes</subject><subject>Storage</subject><subject>Storage capacity</subject><subject>Terrestrial ecosystems</subject><subject>Vegetation</subject><subject>Wetlands</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkE1LxDAQhoMo7rp69iYFD3rpbj6atDnK4hcIgih4K0k63e3aNjVpXfz3ZtnqwcMwh3lmeOdB6JzgOSFULLypoDUwV7olSSoP0JRgyWNJMTtEU4yZiDOc8gk68X6DcZhJdowmjHNCpEim6P0FjP0CV7WraAt9rdoi0pVdgW2s69aViUqAQivz4aPeRg58bx1E_RqirXV1ceV3eB84o5y2bbS2ve9CnaKjUtUezsY-Q293t6_Lh_jp-f5xefMUGyZEH4MmKVdcZcYIKlRKCSs5Tw0lglMJBZVJEgKUmdBUgVIJ1gKrQpSSaJ3qhM3Q9f5u5-znEOLlTeUN1OETsIPPqRAEZwmTJKCX_9CNHVwb0gWKS5EJynigFnvKOOu9gzLvXNUo950TnO-k56P0fJQeNi7Gu4NuoPjjfy2zHxt1gK0</recordid><startdate>20220506</startdate><enddate>20220506</enddate><creator>Temmink, Ralph J M</creator><creator>Lamers, Leon P M</creator><creator>Angelini, Christine</creator><creator>Bouma, Tjeerd J</creator><creator>Fritz, Christian</creator><creator>van de Koppel, Johan</creator><creator>Lexmond, Robin</creator><creator>Rietkerk, Max</creator><creator>Silliman, Brian R</creator><creator>Joosten, Hans</creator><creator>van der Heide, Tjisse</creator><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9467-9875</orcidid><orcidid>https://orcid.org/0000-0002-3664-8904</orcidid><orcidid>https://orcid.org/0000-0001-7824-7546</orcidid><orcidid>https://orcid.org/0000-0001-6360-650X</orcidid><orcidid>https://orcid.org/0000-0001-8694-5811</orcidid><orcidid>https://orcid.org/0000-0003-2687-9749</orcidid><orcidid>https://orcid.org/0000-0002-2698-3848</orcidid><orcidid>https://orcid.org/0000-0003-3769-2154</orcidid><orcidid>https://orcid.org/0000-0002-6669-5269</orcidid><orcidid>https://orcid.org/0000-0002-0103-4275</orcidid><orcidid>https://orcid.org/0000-0003-3926-5615</orcidid></search><sort><creationdate>20220506</creationdate><title>Recovering wetland biogeomorphic feedbacks to restore the world's biotic carbon hotspots</title><author>Temmink, Ralph J M ; Lamers, Leon P M ; Angelini, Christine ; Bouma, Tjeerd J ; Fritz, Christian ; van de Koppel, Johan ; Lexmond, Robin ; Rietkerk, Max ; Silliman, Brian R ; Joosten, Hans ; van der Heide, Tjisse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-eb175a5a8cc626a7213f557c216529ed2944eedf86b2aeaa40b60ad6f91bb7b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anthropogenic factors</topic><topic>Biota</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon Sequestration</topic><topic>Carbon sinks</topic><topic>Carbon sources</topic><topic>Climate</topic><topic>Climate change</topic><topic>Earth surface</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>Ecosystem restoration</topic><topic>Ecosystems</topic><topic>Emissions</topic><topic>Environmental restoration</topic><topic>Feedback</topic><topic>Forest ecosystems</topic><topic>Geomorphology</topic><topic>Global climate</topic><topic>Global warming</topic><topic>Harbors</topic><topic>Human influences</topic><topic>Humans</topic><topic>Landforms</topic><topic>Landscape</topic><topic>Mangroves</topic><topic>Marine ecosystems</topic><topic>Oceans</topic><topic>Organic matter</topic><topic>Paris Agreement</topic><topic>Peatlands</topic><topic>Salt marshes</topic><topic>Storage</topic><topic>Storage capacity</topic><topic>Terrestrial ecosystems</topic><topic>Vegetation</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Temmink, Ralph J M</creatorcontrib><creatorcontrib>Lamers, Leon P M</creatorcontrib><creatorcontrib>Angelini, Christine</creatorcontrib><creatorcontrib>Bouma, Tjeerd J</creatorcontrib><creatorcontrib>Fritz, Christian</creatorcontrib><creatorcontrib>van de Koppel, Johan</creatorcontrib><creatorcontrib>Lexmond, Robin</creatorcontrib><creatorcontrib>Rietkerk, Max</creatorcontrib><creatorcontrib>Silliman, Brian R</creatorcontrib><creatorcontrib>Joosten, Hans</creatorcontrib><creatorcontrib>van der Heide, Tjisse</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Temmink, Ralph J M</au><au>Lamers, Leon P M</au><au>Angelini, Christine</au><au>Bouma, Tjeerd J</au><au>Fritz, Christian</au><au>van de Koppel, Johan</au><au>Lexmond, Robin</au><au>Rietkerk, Max</au><au>Silliman, Brian R</au><au>Joosten, Hans</au><au>van der Heide, Tjisse</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovering wetland biogeomorphic feedbacks to restore the world's biotic carbon hotspots</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2022-05-06</date><risdate>2022</risdate><volume>376</volume><issue>6593</issue><spage>eabn1479</spage><epage>eabn1479</epage><pages>eabn1479-eabn1479</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Biogeomorphic wetlands cover 1% of Earth's surface but store 20% of ecosystem organic carbon. This disproportional share is fueled by high carbon sequestration rates and effective storage in peatlands, mangroves, salt marshes, and seagrass meadows, which greatly exceed those of oceanic and forest ecosystems. Here, we review how feedbacks between geomorphology and landscape-building vegetation underlie these qualities and how feedback disruption can switch wetlands from carbon sinks into sources. Currently, human activities are driving rapid declines in the area of major carbon-storing wetlands (1% annually). Our findings highlight the urgency to stop through conservation ongoing losses and to reestablish landscape-forming feedbacks through restoration innovations that recover the role of biogeomorphic wetlands as the world's biotic carbon hotspots.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>35511964</pmid><doi>10.1126/science.abn1479</doi><orcidid>https://orcid.org/0000-0001-9467-9875</orcidid><orcidid>https://orcid.org/0000-0002-3664-8904</orcidid><orcidid>https://orcid.org/0000-0001-7824-7546</orcidid><orcidid>https://orcid.org/0000-0001-6360-650X</orcidid><orcidid>https://orcid.org/0000-0001-8694-5811</orcidid><orcidid>https://orcid.org/0000-0003-2687-9749</orcidid><orcidid>https://orcid.org/0000-0002-2698-3848</orcidid><orcidid>https://orcid.org/0000-0003-3769-2154</orcidid><orcidid>https://orcid.org/0000-0002-6669-5269</orcidid><orcidid>https://orcid.org/0000-0002-0103-4275</orcidid><orcidid>https://orcid.org/0000-0003-3926-5615</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2022-05, Vol.376 (6593), p.eabn1479-eabn1479
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2661084391
source American Association for the Advancement of Science; MEDLINE
subjects Anthropogenic factors
Biota
Carbon
Carbon dioxide
Carbon Sequestration
Carbon sinks
Carbon sources
Climate
Climate change
Earth surface
Ecology
Ecosystem
Ecosystem restoration
Ecosystems
Emissions
Environmental restoration
Feedback
Forest ecosystems
Geomorphology
Global climate
Global warming
Harbors
Human influences
Humans
Landforms
Landscape
Mangroves
Marine ecosystems
Oceans
Organic matter
Paris Agreement
Peatlands
Salt marshes
Storage
Storage capacity
Terrestrial ecosystems
Vegetation
Wetlands
title Recovering wetland biogeomorphic feedbacks to restore the world's biotic carbon hotspots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A55%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovering%20wetland%20biogeomorphic%20feedbacks%20to%20restore%20the%20world's%20biotic%20carbon%20hotspots&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Temmink,%20Ralph%20J%20M&rft.date=2022-05-06&rft.volume=376&rft.issue=6593&rft.spage=eabn1479&rft.epage=eabn1479&rft.pages=eabn1479-eabn1479&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abn1479&rft_dat=%3Cproquest_cross%3E2659686235%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2659686235&rft_id=info:pmid/35511964&rfr_iscdi=true