Recovering wetland biogeomorphic feedbacks to restore the world's biotic carbon hotspots
Biogeomorphic wetlands cover 1% of Earth's surface but store 20% of ecosystem organic carbon. This disproportional share is fueled by high carbon sequestration rates and effective storage in peatlands, mangroves, salt marshes, and seagrass meadows, which greatly exceed those of oceanic and fore...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2022-05, Vol.376 (6593), p.eabn1479-eabn1479 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | eabn1479 |
---|---|
container_issue | 6593 |
container_start_page | eabn1479 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 376 |
creator | Temmink, Ralph J M Lamers, Leon P M Angelini, Christine Bouma, Tjeerd J Fritz, Christian van de Koppel, Johan Lexmond, Robin Rietkerk, Max Silliman, Brian R Joosten, Hans van der Heide, Tjisse |
description | Biogeomorphic wetlands cover 1% of Earth's surface but store 20% of ecosystem organic carbon. This disproportional share is fueled by high carbon sequestration rates and effective storage in peatlands, mangroves, salt marshes, and seagrass meadows, which greatly exceed those of oceanic and forest ecosystems. Here, we review how feedbacks between geomorphology and landscape-building vegetation underlie these qualities and how feedback disruption can switch wetlands from carbon sinks into sources. Currently, human activities are driving rapid declines in the area of major carbon-storing wetlands (1% annually). Our findings highlight the urgency to stop through conservation ongoing losses and to reestablish landscape-forming feedbacks through restoration innovations that recover the role of biogeomorphic wetlands as the world's biotic carbon hotspots. |
doi_str_mv | 10.1126/science.abn1479 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2661084391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2659686235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-eb175a5a8cc626a7213f557c216529ed2944eedf86b2aeaa40b60ad6f91bb7b43</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMo7rp69iYFD3rpbj6atDnK4hcIgih4K0k63e3aNjVpXfz3ZtnqwcMwh3lmeOdB6JzgOSFULLypoDUwV7olSSoP0JRgyWNJMTtEU4yZiDOc8gk68X6DcZhJdowmjHNCpEim6P0FjP0CV7WraAt9rdoi0pVdgW2s69aViUqAQivz4aPeRg58bx1E_RqirXV1ceV3eB84o5y2bbS2ve9CnaKjUtUezsY-Q293t6_Lh_jp-f5xefMUGyZEH4MmKVdcZcYIKlRKCSs5Tw0lglMJBZVJEgKUmdBUgVIJ1gKrQpSSaJ3qhM3Q9f5u5-znEOLlTeUN1OETsIPPqRAEZwmTJKCX_9CNHVwb0gWKS5EJynigFnvKOOu9gzLvXNUo950TnO-k56P0fJQeNi7Gu4NuoPjjfy2zHxt1gK0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659686235</pqid></control><display><type>article</type><title>Recovering wetland biogeomorphic feedbacks to restore the world's biotic carbon hotspots</title><source>American Association for the Advancement of Science</source><source>MEDLINE</source><creator>Temmink, Ralph J M ; Lamers, Leon P M ; Angelini, Christine ; Bouma, Tjeerd J ; Fritz, Christian ; van de Koppel, Johan ; Lexmond, Robin ; Rietkerk, Max ; Silliman, Brian R ; Joosten, Hans ; van der Heide, Tjisse</creator><creatorcontrib>Temmink, Ralph J M ; Lamers, Leon P M ; Angelini, Christine ; Bouma, Tjeerd J ; Fritz, Christian ; van de Koppel, Johan ; Lexmond, Robin ; Rietkerk, Max ; Silliman, Brian R ; Joosten, Hans ; van der Heide, Tjisse</creatorcontrib><description>Biogeomorphic wetlands cover 1% of Earth's surface but store 20% of ecosystem organic carbon. This disproportional share is fueled by high carbon sequestration rates and effective storage in peatlands, mangroves, salt marshes, and seagrass meadows, which greatly exceed those of oceanic and forest ecosystems. Here, we review how feedbacks between geomorphology and landscape-building vegetation underlie these qualities and how feedback disruption can switch wetlands from carbon sinks into sources. Currently, human activities are driving rapid declines in the area of major carbon-storing wetlands (1% annually). Our findings highlight the urgency to stop through conservation ongoing losses and to reestablish landscape-forming feedbacks through restoration innovations that recover the role of biogeomorphic wetlands as the world's biotic carbon hotspots.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abn1479</identifier><identifier>PMID: 35511964</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Anthropogenic factors ; Biota ; Carbon ; Carbon dioxide ; Carbon Sequestration ; Carbon sinks ; Carbon sources ; Climate ; Climate change ; Earth surface ; Ecology ; Ecosystem ; Ecosystem restoration ; Ecosystems ; Emissions ; Environmental restoration ; Feedback ; Forest ecosystems ; Geomorphology ; Global climate ; Global warming ; Harbors ; Human influences ; Humans ; Landforms ; Landscape ; Mangroves ; Marine ecosystems ; Oceans ; Organic matter ; Paris Agreement ; Peatlands ; Salt marshes ; Storage ; Storage capacity ; Terrestrial ecosystems ; Vegetation ; Wetlands</subject><ispartof>Science (American Association for the Advancement of Science), 2022-05, Vol.376 (6593), p.eabn1479-eabn1479</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-eb175a5a8cc626a7213f557c216529ed2944eedf86b2aeaa40b60ad6f91bb7b43</citedby><cites>FETCH-LOGICAL-c366t-eb175a5a8cc626a7213f557c216529ed2944eedf86b2aeaa40b60ad6f91bb7b43</cites><orcidid>0000-0001-9467-9875 ; 0000-0002-3664-8904 ; 0000-0001-7824-7546 ; 0000-0001-6360-650X ; 0000-0001-8694-5811 ; 0000-0003-2687-9749 ; 0000-0002-2698-3848 ; 0000-0003-3769-2154 ; 0000-0002-6669-5269 ; 0000-0002-0103-4275 ; 0000-0003-3926-5615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35511964$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Temmink, Ralph J M</creatorcontrib><creatorcontrib>Lamers, Leon P M</creatorcontrib><creatorcontrib>Angelini, Christine</creatorcontrib><creatorcontrib>Bouma, Tjeerd J</creatorcontrib><creatorcontrib>Fritz, Christian</creatorcontrib><creatorcontrib>van de Koppel, Johan</creatorcontrib><creatorcontrib>Lexmond, Robin</creatorcontrib><creatorcontrib>Rietkerk, Max</creatorcontrib><creatorcontrib>Silliman, Brian R</creatorcontrib><creatorcontrib>Joosten, Hans</creatorcontrib><creatorcontrib>van der Heide, Tjisse</creatorcontrib><title>Recovering wetland biogeomorphic feedbacks to restore the world's biotic carbon hotspots</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Biogeomorphic wetlands cover 1% of Earth's surface but store 20% of ecosystem organic carbon. This disproportional share is fueled by high carbon sequestration rates and effective storage in peatlands, mangroves, salt marshes, and seagrass meadows, which greatly exceed those of oceanic and forest ecosystems. Here, we review how feedbacks between geomorphology and landscape-building vegetation underlie these qualities and how feedback disruption can switch wetlands from carbon sinks into sources. Currently, human activities are driving rapid declines in the area of major carbon-storing wetlands (1% annually). Our findings highlight the urgency to stop through conservation ongoing losses and to reestablish landscape-forming feedbacks through restoration innovations that recover the role of biogeomorphic wetlands as the world's biotic carbon hotspots.</description><subject>Anthropogenic factors</subject><subject>Biota</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon Sequestration</subject><subject>Carbon sinks</subject><subject>Carbon sources</subject><subject>Climate</subject><subject>Climate change</subject><subject>Earth surface</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>Ecosystem restoration</subject><subject>Ecosystems</subject><subject>Emissions</subject><subject>Environmental restoration</subject><subject>Feedback</subject><subject>Forest ecosystems</subject><subject>Geomorphology</subject><subject>Global climate</subject><subject>Global warming</subject><subject>Harbors</subject><subject>Human influences</subject><subject>Humans</subject><subject>Landforms</subject><subject>Landscape</subject><subject>Mangroves</subject><subject>Marine ecosystems</subject><subject>Oceans</subject><subject>Organic matter</subject><subject>Paris Agreement</subject><subject>Peatlands</subject><subject>Salt marshes</subject><subject>Storage</subject><subject>Storage capacity</subject><subject>Terrestrial ecosystems</subject><subject>Vegetation</subject><subject>Wetlands</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkE1LxDAQhoMo7rp69iYFD3rpbj6atDnK4hcIgih4K0k63e3aNjVpXfz3ZtnqwcMwh3lmeOdB6JzgOSFULLypoDUwV7olSSoP0JRgyWNJMTtEU4yZiDOc8gk68X6DcZhJdowmjHNCpEim6P0FjP0CV7WraAt9rdoi0pVdgW2s69aViUqAQivz4aPeRg58bx1E_RqirXV1ceV3eB84o5y2bbS2ve9CnaKjUtUezsY-Q293t6_Lh_jp-f5xefMUGyZEH4MmKVdcZcYIKlRKCSs5Tw0lglMJBZVJEgKUmdBUgVIJ1gKrQpSSaJ3qhM3Q9f5u5-znEOLlTeUN1OETsIPPqRAEZwmTJKCX_9CNHVwb0gWKS5EJynigFnvKOOu9gzLvXNUo950TnO-k56P0fJQeNi7Gu4NuoPjjfy2zHxt1gK0</recordid><startdate>20220506</startdate><enddate>20220506</enddate><creator>Temmink, Ralph J M</creator><creator>Lamers, Leon P M</creator><creator>Angelini, Christine</creator><creator>Bouma, Tjeerd J</creator><creator>Fritz, Christian</creator><creator>van de Koppel, Johan</creator><creator>Lexmond, Robin</creator><creator>Rietkerk, Max</creator><creator>Silliman, Brian R</creator><creator>Joosten, Hans</creator><creator>van der Heide, Tjisse</creator><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9467-9875</orcidid><orcidid>https://orcid.org/0000-0002-3664-8904</orcidid><orcidid>https://orcid.org/0000-0001-7824-7546</orcidid><orcidid>https://orcid.org/0000-0001-6360-650X</orcidid><orcidid>https://orcid.org/0000-0001-8694-5811</orcidid><orcidid>https://orcid.org/0000-0003-2687-9749</orcidid><orcidid>https://orcid.org/0000-0002-2698-3848</orcidid><orcidid>https://orcid.org/0000-0003-3769-2154</orcidid><orcidid>https://orcid.org/0000-0002-6669-5269</orcidid><orcidid>https://orcid.org/0000-0002-0103-4275</orcidid><orcidid>https://orcid.org/0000-0003-3926-5615</orcidid></search><sort><creationdate>20220506</creationdate><title>Recovering wetland biogeomorphic feedbacks to restore the world's biotic carbon hotspots</title><author>Temmink, Ralph J M ; Lamers, Leon P M ; Angelini, Christine ; Bouma, Tjeerd J ; Fritz, Christian ; van de Koppel, Johan ; Lexmond, Robin ; Rietkerk, Max ; Silliman, Brian R ; Joosten, Hans ; van der Heide, Tjisse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-eb175a5a8cc626a7213f557c216529ed2944eedf86b2aeaa40b60ad6f91bb7b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anthropogenic factors</topic><topic>Biota</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon Sequestration</topic><topic>Carbon sinks</topic><topic>Carbon sources</topic><topic>Climate</topic><topic>Climate change</topic><topic>Earth surface</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>Ecosystem restoration</topic><topic>Ecosystems</topic><topic>Emissions</topic><topic>Environmental restoration</topic><topic>Feedback</topic><topic>Forest ecosystems</topic><topic>Geomorphology</topic><topic>Global climate</topic><topic>Global warming</topic><topic>Harbors</topic><topic>Human influences</topic><topic>Humans</topic><topic>Landforms</topic><topic>Landscape</topic><topic>Mangroves</topic><topic>Marine ecosystems</topic><topic>Oceans</topic><topic>Organic matter</topic><topic>Paris Agreement</topic><topic>Peatlands</topic><topic>Salt marshes</topic><topic>Storage</topic><topic>Storage capacity</topic><topic>Terrestrial ecosystems</topic><topic>Vegetation</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Temmink, Ralph J M</creatorcontrib><creatorcontrib>Lamers, Leon P M</creatorcontrib><creatorcontrib>Angelini, Christine</creatorcontrib><creatorcontrib>Bouma, Tjeerd J</creatorcontrib><creatorcontrib>Fritz, Christian</creatorcontrib><creatorcontrib>van de Koppel, Johan</creatorcontrib><creatorcontrib>Lexmond, Robin</creatorcontrib><creatorcontrib>Rietkerk, Max</creatorcontrib><creatorcontrib>Silliman, Brian R</creatorcontrib><creatorcontrib>Joosten, Hans</creatorcontrib><creatorcontrib>van der Heide, Tjisse</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Temmink, Ralph J M</au><au>Lamers, Leon P M</au><au>Angelini, Christine</au><au>Bouma, Tjeerd J</au><au>Fritz, Christian</au><au>van de Koppel, Johan</au><au>Lexmond, Robin</au><au>Rietkerk, Max</au><au>Silliman, Brian R</au><au>Joosten, Hans</au><au>van der Heide, Tjisse</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovering wetland biogeomorphic feedbacks to restore the world's biotic carbon hotspots</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2022-05-06</date><risdate>2022</risdate><volume>376</volume><issue>6593</issue><spage>eabn1479</spage><epage>eabn1479</epage><pages>eabn1479-eabn1479</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Biogeomorphic wetlands cover 1% of Earth's surface but store 20% of ecosystem organic carbon. This disproportional share is fueled by high carbon sequestration rates and effective storage in peatlands, mangroves, salt marshes, and seagrass meadows, which greatly exceed those of oceanic and forest ecosystems. Here, we review how feedbacks between geomorphology and landscape-building vegetation underlie these qualities and how feedback disruption can switch wetlands from carbon sinks into sources. Currently, human activities are driving rapid declines in the area of major carbon-storing wetlands (1% annually). Our findings highlight the urgency to stop through conservation ongoing losses and to reestablish landscape-forming feedbacks through restoration innovations that recover the role of biogeomorphic wetlands as the world's biotic carbon hotspots.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>35511964</pmid><doi>10.1126/science.abn1479</doi><orcidid>https://orcid.org/0000-0001-9467-9875</orcidid><orcidid>https://orcid.org/0000-0002-3664-8904</orcidid><orcidid>https://orcid.org/0000-0001-7824-7546</orcidid><orcidid>https://orcid.org/0000-0001-6360-650X</orcidid><orcidid>https://orcid.org/0000-0001-8694-5811</orcidid><orcidid>https://orcid.org/0000-0003-2687-9749</orcidid><orcidid>https://orcid.org/0000-0002-2698-3848</orcidid><orcidid>https://orcid.org/0000-0003-3769-2154</orcidid><orcidid>https://orcid.org/0000-0002-6669-5269</orcidid><orcidid>https://orcid.org/0000-0002-0103-4275</orcidid><orcidid>https://orcid.org/0000-0003-3926-5615</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2022-05, Vol.376 (6593), p.eabn1479-eabn1479 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2661084391 |
source | American Association for the Advancement of Science; MEDLINE |
subjects | Anthropogenic factors Biota Carbon Carbon dioxide Carbon Sequestration Carbon sinks Carbon sources Climate Climate change Earth surface Ecology Ecosystem Ecosystem restoration Ecosystems Emissions Environmental restoration Feedback Forest ecosystems Geomorphology Global climate Global warming Harbors Human influences Humans Landforms Landscape Mangroves Marine ecosystems Oceans Organic matter Paris Agreement Peatlands Salt marshes Storage Storage capacity Terrestrial ecosystems Vegetation Wetlands |
title | Recovering wetland biogeomorphic feedbacks to restore the world's biotic carbon hotspots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A55%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovering%20wetland%20biogeomorphic%20feedbacks%20to%20restore%20the%20world's%20biotic%20carbon%20hotspots&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Temmink,%20Ralph%20J%20M&rft.date=2022-05-06&rft.volume=376&rft.issue=6593&rft.spage=eabn1479&rft.epage=eabn1479&rft.pages=eabn1479-eabn1479&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abn1479&rft_dat=%3Cproquest_cross%3E2659686235%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2659686235&rft_id=info:pmid/35511964&rfr_iscdi=true |