The formation mechanism of uranium and thorium hydride phosphorus: a systematically theoretical study

Activation of prototypical bonds by actinide atoms is an important aspect of material activity, and the results can be used for the study of nuclear material storage. In this study, the activation of the P-H bonds of the PH 3 molecule by U or Th to form uranium or thorium hydride phosphorus has been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2019-05, Vol.9 (3), p.17119-17128
Hauptverfasser: Zhao, Huifeng, Li, Peng, Duan, Meigang, Xie, Feng, Ma, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17128
container_issue 3
container_start_page 17119
container_title RSC advances
container_volume 9
creator Zhao, Huifeng
Li, Peng
Duan, Meigang
Xie, Feng
Ma, Jie
description Activation of prototypical bonds by actinide atoms is an important aspect of material activity, and the results can be used for the study of nuclear material storage. In this study, the activation of the P-H bonds of the PH 3 molecule by U or Th to form uranium or thorium hydride phosphorus has been systematically explored using density functional theory. A detailed description of the reaction mechanism which includes the potential energy profiles and the properties of bond evolution is presented. There are two types of reaction channels, isomerization and dehydrogenation in U + PH 3 and Th + PH 3 . The difference between the two reactions is the process of the first P-H bond dissociation. The evolution characteristics of the chemical bonds along reaction pathways is analyzed by using electron localization functions, quantum theory of atoms in molecules, Mayer bond orders and natural bond orbitals. The reaction rate constants are calculated at the variational transition state level, and rate-determining steps are predicted. The reactions of U, Th with PH 3 to form the uranium and thorium hydride phosphorus have been systematically explored.
doi_str_mv 10.1039/c9ra02098e
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2661083269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2241344999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-6841542f8f0c73d0a555e599c0b04f72cb31d616e4064bb9cbc14fb6840bd6b33</originalsourceid><addsrcrecordid>eNp9ks1rFTEUxYMottRu3CsRN1J4mu9OXAjl0apQEKSuQz5unCkzk2cyI8x_b6avPqsLAyEn3N893HCC0HNK3lLC9TuvsyWM6AYeoWNGhNowovTjB_oInZZyS-pSkjJFn6IjLiXVjRDHCG5awDHlwU5dGvEAvrVjVwacIp5zlfOA7Rjw1Ka86nYJuQuAd20qdee5vMcWl6VMsFp42_dLhSFluLvhMs1heYaeRNsXOL0_T9C3q8ub7afN9ZePn7cX1xsvpJg2qhFUChabSPw5D8RKKUFq7YkjIp4z7zgNiioQRAnntHeeiuhqG3FBOc5P0Ie97252AwQP45Rtb3a5G2xeTLKd-bsydq35nn4aXQ1lsxq8uTfI6ccMZTJDVzz0vR0hzcUwpShpOFO6oq__QW_TnMf6PMOYoFwIrVfqbE_5nErJEA_DUGLWAM1Wf724C_Cywi8fjn9Af8dVgVd7IBd_qP75AWYXYmVe_I_hvwD8PK08</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2241344999</pqid></control><display><type>article</type><title>The formation mechanism of uranium and thorium hydride phosphorus: a systematically theoretical study</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Zhao, Huifeng ; Li, Peng ; Duan, Meigang ; Xie, Feng ; Ma, Jie</creator><creatorcontrib>Zhao, Huifeng ; Li, Peng ; Duan, Meigang ; Xie, Feng ; Ma, Jie</creatorcontrib><description>Activation of prototypical bonds by actinide atoms is an important aspect of material activity, and the results can be used for the study of nuclear material storage. In this study, the activation of the P-H bonds of the PH 3 molecule by U or Th to form uranium or thorium hydride phosphorus has been systematically explored using density functional theory. A detailed description of the reaction mechanism which includes the potential energy profiles and the properties of bond evolution is presented. There are two types of reaction channels, isomerization and dehydrogenation in U + PH 3 and Th + PH 3 . The difference between the two reactions is the process of the first P-H bond dissociation. The evolution characteristics of the chemical bonds along reaction pathways is analyzed by using electron localization functions, quantum theory of atoms in molecules, Mayer bond orders and natural bond orbitals. The reaction rate constants are calculated at the variational transition state level, and rate-determining steps are predicted. The reactions of U, Th with PH 3 to form the uranium and thorium hydride phosphorus have been systematically explored.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c9ra02098e</identifier><identifier>PMID: 35519844</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemical bonds ; Chemistry ; Dehydrogenation ; Density functional theory ; Evolution ; Hydrides ; Hydrogen bonds ; Isomerization ; Mathematical analysis ; Organic chemistry ; Phosphorus ; Potential energy ; Quantum theory ; Rate constants ; Reaction mechanisms ; Thorium</subject><ispartof>RSC advances, 2019-05, Vol.9 (3), p.17119-17128</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2019</rights><rights>This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-6841542f8f0c73d0a555e599c0b04f72cb31d616e4064bb9cbc14fb6840bd6b33</citedby><cites>FETCH-LOGICAL-c454t-6841542f8f0c73d0a555e599c0b04f72cb31d616e4064bb9cbc14fb6840bd6b33</cites><orcidid>0000-0002-8486-0117 ; 0000-0001-8868-9743</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9064583/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9064583/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35519844$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Huifeng</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Duan, Meigang</creatorcontrib><creatorcontrib>Xie, Feng</creatorcontrib><creatorcontrib>Ma, Jie</creatorcontrib><title>The formation mechanism of uranium and thorium hydride phosphorus: a systematically theoretical study</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Activation of prototypical bonds by actinide atoms is an important aspect of material activity, and the results can be used for the study of nuclear material storage. In this study, the activation of the P-H bonds of the PH 3 molecule by U or Th to form uranium or thorium hydride phosphorus has been systematically explored using density functional theory. A detailed description of the reaction mechanism which includes the potential energy profiles and the properties of bond evolution is presented. There are two types of reaction channels, isomerization and dehydrogenation in U + PH 3 and Th + PH 3 . The difference between the two reactions is the process of the first P-H bond dissociation. The evolution characteristics of the chemical bonds along reaction pathways is analyzed by using electron localization functions, quantum theory of atoms in molecules, Mayer bond orders and natural bond orbitals. The reaction rate constants are calculated at the variational transition state level, and rate-determining steps are predicted. The reactions of U, Th with PH 3 to form the uranium and thorium hydride phosphorus have been systematically explored.</description><subject>Chemical bonds</subject><subject>Chemistry</subject><subject>Dehydrogenation</subject><subject>Density functional theory</subject><subject>Evolution</subject><subject>Hydrides</subject><subject>Hydrogen bonds</subject><subject>Isomerization</subject><subject>Mathematical analysis</subject><subject>Organic chemistry</subject><subject>Phosphorus</subject><subject>Potential energy</subject><subject>Quantum theory</subject><subject>Rate constants</subject><subject>Reaction mechanisms</subject><subject>Thorium</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9ks1rFTEUxYMottRu3CsRN1J4mu9OXAjl0apQEKSuQz5unCkzk2cyI8x_b6avPqsLAyEn3N893HCC0HNK3lLC9TuvsyWM6AYeoWNGhNowovTjB_oInZZyS-pSkjJFn6IjLiXVjRDHCG5awDHlwU5dGvEAvrVjVwacIp5zlfOA7Rjw1Ka86nYJuQuAd20qdee5vMcWl6VMsFp42_dLhSFluLvhMs1heYaeRNsXOL0_T9C3q8ub7afN9ZePn7cX1xsvpJg2qhFUChabSPw5D8RKKUFq7YkjIp4z7zgNiioQRAnntHeeiuhqG3FBOc5P0Ie97252AwQP45Rtb3a5G2xeTLKd-bsydq35nn4aXQ1lsxq8uTfI6ccMZTJDVzz0vR0hzcUwpShpOFO6oq__QW_TnMf6PMOYoFwIrVfqbE_5nErJEA_DUGLWAM1Wf724C_Cywi8fjn9Af8dVgVd7IBd_qP75AWYXYmVe_I_hvwD8PK08</recordid><startdate>20190531</startdate><enddate>20190531</enddate><creator>Zhao, Huifeng</creator><creator>Li, Peng</creator><creator>Duan, Meigang</creator><creator>Xie, Feng</creator><creator>Ma, Jie</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8486-0117</orcidid><orcidid>https://orcid.org/0000-0001-8868-9743</orcidid></search><sort><creationdate>20190531</creationdate><title>The formation mechanism of uranium and thorium hydride phosphorus: a systematically theoretical study</title><author>Zhao, Huifeng ; Li, Peng ; Duan, Meigang ; Xie, Feng ; Ma, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-6841542f8f0c73d0a555e599c0b04f72cb31d616e4064bb9cbc14fb6840bd6b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemical bonds</topic><topic>Chemistry</topic><topic>Dehydrogenation</topic><topic>Density functional theory</topic><topic>Evolution</topic><topic>Hydrides</topic><topic>Hydrogen bonds</topic><topic>Isomerization</topic><topic>Mathematical analysis</topic><topic>Organic chemistry</topic><topic>Phosphorus</topic><topic>Potential energy</topic><topic>Quantum theory</topic><topic>Rate constants</topic><topic>Reaction mechanisms</topic><topic>Thorium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Huifeng</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Duan, Meigang</creatorcontrib><creatorcontrib>Xie, Feng</creatorcontrib><creatorcontrib>Ma, Jie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Huifeng</au><au>Li, Peng</au><au>Duan, Meigang</au><au>Xie, Feng</au><au>Ma, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The formation mechanism of uranium and thorium hydride phosphorus: a systematically theoretical study</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2019-05-31</date><risdate>2019</risdate><volume>9</volume><issue>3</issue><spage>17119</spage><epage>17128</epage><pages>17119-17128</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Activation of prototypical bonds by actinide atoms is an important aspect of material activity, and the results can be used for the study of nuclear material storage. In this study, the activation of the P-H bonds of the PH 3 molecule by U or Th to form uranium or thorium hydride phosphorus has been systematically explored using density functional theory. A detailed description of the reaction mechanism which includes the potential energy profiles and the properties of bond evolution is presented. There are two types of reaction channels, isomerization and dehydrogenation in U + PH 3 and Th + PH 3 . The difference between the two reactions is the process of the first P-H bond dissociation. The evolution characteristics of the chemical bonds along reaction pathways is analyzed by using electron localization functions, quantum theory of atoms in molecules, Mayer bond orders and natural bond orbitals. The reaction rate constants are calculated at the variational transition state level, and rate-determining steps are predicted. The reactions of U, Th with PH 3 to form the uranium and thorium hydride phosphorus have been systematically explored.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35519844</pmid><doi>10.1039/c9ra02098e</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8486-0117</orcidid><orcidid>https://orcid.org/0000-0001-8868-9743</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2019-05, Vol.9 (3), p.17119-17128
issn 2046-2069
2046-2069
language eng
recordid cdi_proquest_miscellaneous_2661083269
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Chemical bonds
Chemistry
Dehydrogenation
Density functional theory
Evolution
Hydrides
Hydrogen bonds
Isomerization
Mathematical analysis
Organic chemistry
Phosphorus
Potential energy
Quantum theory
Rate constants
Reaction mechanisms
Thorium
title The formation mechanism of uranium and thorium hydride phosphorus: a systematically theoretical study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20formation%20mechanism%20of%20uranium%20and%20thorium%20hydride%20phosphorus:%20a%20systematically%20theoretical%20study&rft.jtitle=RSC%20advances&rft.au=Zhao,%20Huifeng&rft.date=2019-05-31&rft.volume=9&rft.issue=3&rft.spage=17119&rft.epage=17128&rft.pages=17119-17128&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c9ra02098e&rft_dat=%3Cproquest_pubme%3E2241344999%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2241344999&rft_id=info:pmid/35519844&rfr_iscdi=true