The formation mechanism of uranium and thorium hydride phosphorus: a systematically theoretical study
Activation of prototypical bonds by actinide atoms is an important aspect of material activity, and the results can be used for the study of nuclear material storage. In this study, the activation of the P-H bonds of the PH 3 molecule by U or Th to form uranium or thorium hydride phosphorus has been...
Gespeichert in:
Veröffentlicht in: | RSC advances 2019-05, Vol.9 (3), p.17119-17128 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17128 |
---|---|
container_issue | 3 |
container_start_page | 17119 |
container_title | RSC advances |
container_volume | 9 |
creator | Zhao, Huifeng Li, Peng Duan, Meigang Xie, Feng Ma, Jie |
description | Activation of prototypical bonds by actinide atoms is an important aspect of material activity, and the results can be used for the study of nuclear material storage. In this study, the activation of the P-H bonds of the PH
3
molecule by U or Th to form uranium or thorium hydride phosphorus has been systematically explored using density functional theory. A detailed description of the reaction mechanism which includes the potential energy profiles and the properties of bond evolution is presented. There are two types of reaction channels, isomerization and dehydrogenation in U + PH
3
and Th + PH
3
. The difference between the two reactions is the process of the first P-H bond dissociation. The evolution characteristics of the chemical bonds along reaction pathways is analyzed by using electron localization functions, quantum theory of atoms in molecules, Mayer bond orders and natural bond orbitals. The reaction rate constants are calculated at the variational transition state level, and rate-determining steps are predicted.
The reactions of U, Th with PH
3
to form the uranium and thorium hydride phosphorus have been systematically explored. |
doi_str_mv | 10.1039/c9ra02098e |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2661083269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2241344999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-6841542f8f0c73d0a555e599c0b04f72cb31d616e4064bb9cbc14fb6840bd6b33</originalsourceid><addsrcrecordid>eNp9ks1rFTEUxYMottRu3CsRN1J4mu9OXAjl0apQEKSuQz5unCkzk2cyI8x_b6avPqsLAyEn3N893HCC0HNK3lLC9TuvsyWM6AYeoWNGhNowovTjB_oInZZyS-pSkjJFn6IjLiXVjRDHCG5awDHlwU5dGvEAvrVjVwacIp5zlfOA7Rjw1Ka86nYJuQuAd20qdee5vMcWl6VMsFp42_dLhSFluLvhMs1heYaeRNsXOL0_T9C3q8ub7afN9ZePn7cX1xsvpJg2qhFUChabSPw5D8RKKUFq7YkjIp4z7zgNiioQRAnntHeeiuhqG3FBOc5P0Ie97252AwQP45Rtb3a5G2xeTLKd-bsydq35nn4aXQ1lsxq8uTfI6ccMZTJDVzz0vR0hzcUwpShpOFO6oq__QW_TnMf6PMOYoFwIrVfqbE_5nErJEA_DUGLWAM1Wf724C_Cywi8fjn9Af8dVgVd7IBd_qP75AWYXYmVe_I_hvwD8PK08</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2241344999</pqid></control><display><type>article</type><title>The formation mechanism of uranium and thorium hydride phosphorus: a systematically theoretical study</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Zhao, Huifeng ; Li, Peng ; Duan, Meigang ; Xie, Feng ; Ma, Jie</creator><creatorcontrib>Zhao, Huifeng ; Li, Peng ; Duan, Meigang ; Xie, Feng ; Ma, Jie</creatorcontrib><description>Activation of prototypical bonds by actinide atoms is an important aspect of material activity, and the results can be used for the study of nuclear material storage. In this study, the activation of the P-H bonds of the PH
3
molecule by U or Th to form uranium or thorium hydride phosphorus has been systematically explored using density functional theory. A detailed description of the reaction mechanism which includes the potential energy profiles and the properties of bond evolution is presented. There are two types of reaction channels, isomerization and dehydrogenation in U + PH
3
and Th + PH
3
. The difference between the two reactions is the process of the first P-H bond dissociation. The evolution characteristics of the chemical bonds along reaction pathways is analyzed by using electron localization functions, quantum theory of atoms in molecules, Mayer bond orders and natural bond orbitals. The reaction rate constants are calculated at the variational transition state level, and rate-determining steps are predicted.
The reactions of U, Th with PH
3
to form the uranium and thorium hydride phosphorus have been systematically explored.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c9ra02098e</identifier><identifier>PMID: 35519844</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemical bonds ; Chemistry ; Dehydrogenation ; Density functional theory ; Evolution ; Hydrides ; Hydrogen bonds ; Isomerization ; Mathematical analysis ; Organic chemistry ; Phosphorus ; Potential energy ; Quantum theory ; Rate constants ; Reaction mechanisms ; Thorium</subject><ispartof>RSC advances, 2019-05, Vol.9 (3), p.17119-17128</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2019</rights><rights>This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-6841542f8f0c73d0a555e599c0b04f72cb31d616e4064bb9cbc14fb6840bd6b33</citedby><cites>FETCH-LOGICAL-c454t-6841542f8f0c73d0a555e599c0b04f72cb31d616e4064bb9cbc14fb6840bd6b33</cites><orcidid>0000-0002-8486-0117 ; 0000-0001-8868-9743</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9064583/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9064583/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35519844$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Huifeng</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Duan, Meigang</creatorcontrib><creatorcontrib>Xie, Feng</creatorcontrib><creatorcontrib>Ma, Jie</creatorcontrib><title>The formation mechanism of uranium and thorium hydride phosphorus: a systematically theoretical study</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Activation of prototypical bonds by actinide atoms is an important aspect of material activity, and the results can be used for the study of nuclear material storage. In this study, the activation of the P-H bonds of the PH
3
molecule by U or Th to form uranium or thorium hydride phosphorus has been systematically explored using density functional theory. A detailed description of the reaction mechanism which includes the potential energy profiles and the properties of bond evolution is presented. There are two types of reaction channels, isomerization and dehydrogenation in U + PH
3
and Th + PH
3
. The difference between the two reactions is the process of the first P-H bond dissociation. The evolution characteristics of the chemical bonds along reaction pathways is analyzed by using electron localization functions, quantum theory of atoms in molecules, Mayer bond orders and natural bond orbitals. The reaction rate constants are calculated at the variational transition state level, and rate-determining steps are predicted.
The reactions of U, Th with PH
3
to form the uranium and thorium hydride phosphorus have been systematically explored.</description><subject>Chemical bonds</subject><subject>Chemistry</subject><subject>Dehydrogenation</subject><subject>Density functional theory</subject><subject>Evolution</subject><subject>Hydrides</subject><subject>Hydrogen bonds</subject><subject>Isomerization</subject><subject>Mathematical analysis</subject><subject>Organic chemistry</subject><subject>Phosphorus</subject><subject>Potential energy</subject><subject>Quantum theory</subject><subject>Rate constants</subject><subject>Reaction mechanisms</subject><subject>Thorium</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9ks1rFTEUxYMottRu3CsRN1J4mu9OXAjl0apQEKSuQz5unCkzk2cyI8x_b6avPqsLAyEn3N893HCC0HNK3lLC9TuvsyWM6AYeoWNGhNowovTjB_oInZZyS-pSkjJFn6IjLiXVjRDHCG5awDHlwU5dGvEAvrVjVwacIp5zlfOA7Rjw1Ka86nYJuQuAd20qdee5vMcWl6VMsFp42_dLhSFluLvhMs1heYaeRNsXOL0_T9C3q8ub7afN9ZePn7cX1xsvpJg2qhFUChabSPw5D8RKKUFq7YkjIp4z7zgNiioQRAnntHeeiuhqG3FBOc5P0Ie97252AwQP45Rtb3a5G2xeTLKd-bsydq35nn4aXQ1lsxq8uTfI6ccMZTJDVzz0vR0hzcUwpShpOFO6oq__QW_TnMf6PMOYoFwIrVfqbE_5nErJEA_DUGLWAM1Wf724C_Cywi8fjn9Af8dVgVd7IBd_qP75AWYXYmVe_I_hvwD8PK08</recordid><startdate>20190531</startdate><enddate>20190531</enddate><creator>Zhao, Huifeng</creator><creator>Li, Peng</creator><creator>Duan, Meigang</creator><creator>Xie, Feng</creator><creator>Ma, Jie</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8486-0117</orcidid><orcidid>https://orcid.org/0000-0001-8868-9743</orcidid></search><sort><creationdate>20190531</creationdate><title>The formation mechanism of uranium and thorium hydride phosphorus: a systematically theoretical study</title><author>Zhao, Huifeng ; Li, Peng ; Duan, Meigang ; Xie, Feng ; Ma, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-6841542f8f0c73d0a555e599c0b04f72cb31d616e4064bb9cbc14fb6840bd6b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemical bonds</topic><topic>Chemistry</topic><topic>Dehydrogenation</topic><topic>Density functional theory</topic><topic>Evolution</topic><topic>Hydrides</topic><topic>Hydrogen bonds</topic><topic>Isomerization</topic><topic>Mathematical analysis</topic><topic>Organic chemistry</topic><topic>Phosphorus</topic><topic>Potential energy</topic><topic>Quantum theory</topic><topic>Rate constants</topic><topic>Reaction mechanisms</topic><topic>Thorium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Huifeng</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Duan, Meigang</creatorcontrib><creatorcontrib>Xie, Feng</creatorcontrib><creatorcontrib>Ma, Jie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Huifeng</au><au>Li, Peng</au><au>Duan, Meigang</au><au>Xie, Feng</au><au>Ma, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The formation mechanism of uranium and thorium hydride phosphorus: a systematically theoretical study</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2019-05-31</date><risdate>2019</risdate><volume>9</volume><issue>3</issue><spage>17119</spage><epage>17128</epage><pages>17119-17128</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Activation of prototypical bonds by actinide atoms is an important aspect of material activity, and the results can be used for the study of nuclear material storage. In this study, the activation of the P-H bonds of the PH
3
molecule by U or Th to form uranium or thorium hydride phosphorus has been systematically explored using density functional theory. A detailed description of the reaction mechanism which includes the potential energy profiles and the properties of bond evolution is presented. There are two types of reaction channels, isomerization and dehydrogenation in U + PH
3
and Th + PH
3
. The difference between the two reactions is the process of the first P-H bond dissociation. The evolution characteristics of the chemical bonds along reaction pathways is analyzed by using electron localization functions, quantum theory of atoms in molecules, Mayer bond orders and natural bond orbitals. The reaction rate constants are calculated at the variational transition state level, and rate-determining steps are predicted.
The reactions of U, Th with PH
3
to form the uranium and thorium hydride phosphorus have been systematically explored.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35519844</pmid><doi>10.1039/c9ra02098e</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8486-0117</orcidid><orcidid>https://orcid.org/0000-0001-8868-9743</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2019-05, Vol.9 (3), p.17119-17128 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_proquest_miscellaneous_2661083269 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Chemical bonds Chemistry Dehydrogenation Density functional theory Evolution Hydrides Hydrogen bonds Isomerization Mathematical analysis Organic chemistry Phosphorus Potential energy Quantum theory Rate constants Reaction mechanisms Thorium |
title | The formation mechanism of uranium and thorium hydride phosphorus: a systematically theoretical study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20formation%20mechanism%20of%20uranium%20and%20thorium%20hydride%20phosphorus:%20a%20systematically%20theoretical%20study&rft.jtitle=RSC%20advances&rft.au=Zhao,%20Huifeng&rft.date=2019-05-31&rft.volume=9&rft.issue=3&rft.spage=17119&rft.epage=17128&rft.pages=17119-17128&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c9ra02098e&rft_dat=%3Cproquest_pubme%3E2241344999%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2241344999&rft_id=info:pmid/35519844&rfr_iscdi=true |