Molecular dynamics study of convective heat transfer mechanism in a nano heat exchanger

With the rapid development of micro/nano electro-mechanical systems, the convective heat transfer at the micro/nanoscale has been widely studied for the thermal management of micro/nano devices. Here we investigate the convective heat transfer mechanism of a nano heat exchanger by the employment of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2020-06, Vol.1 (39), p.2397-2317
Hauptverfasser: Sun, Haiyi, Li, Fei, Wang, Man, Xin, Gongming, Wang, Xinyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2317
container_issue 39
container_start_page 2397
container_title RSC advances
container_volume 1
creator Sun, Haiyi
Li, Fei
Wang, Man
Xin, Gongming
Wang, Xinyu
description With the rapid development of micro/nano electro-mechanical systems, the convective heat transfer at the micro/nanoscale has been widely studied for the thermal management of micro/nano devices. Here we investigate the convective heat transfer mechanism of a nano heat exchanger by the employment of molecular dynamics simulation with a modified thermal pump method. First, the temperature jump and velocity slip are observed at the wall-fluid interfaces of the nano heat exchanger. Moreover, the larger Kapitza resistance in the entrance region weakens the convective heat transfer. Second, the heat transfer performance of the nano heat exchanger can be improved by increasing the surface wettability of the solid walls owing to more fluid atoms being involved in heat transport at the walls when the wall-fluid interaction is enhanced. Meanwhile, the strong surface wettability results in the appearance of the quasi-solid fluid layers, which improves the heat transfer between walls and fluids. Finally, we point out that when the surface wettability of the nano heat exchanger is weak, the heat transfer of the hot fluid side is better than that of the cold fluid side, while the convective heat transfer performances of the cold and hot fluid sides are reversed when the surface wettability is strong. This is because of the feebler temperature jump of the hot fluid side when wall-fluid interaction is small and the greater velocity slip of the cold fluid side for walls with large wall-fluid interaction. The convective heat transfer mechanism in a nano heat exchanger is investigated using molecular dynamics simulation.
doi_str_mv 10.1039/d0ra04295a
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2661082732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2414740545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-afa4e88d2c26e9ffd26531d4d19fb3894739da9bb959c7ab80afe3d968e24ef63</originalsourceid><addsrcrecordid>eNpdkc9rFDEYhoMottRevCsBL1JYza_JTC7CUq0KFUEUj-Gb5Et3ykxSk5nF_e9N3bpWc0ngfXh4w0vIU85ecSbNa88yMCVMAw_IsWBKrwTT5uG99xE5LeWa1aMbLjR_TI5k0wgmeXNMvn9KI7plhEz9LsI0uELLvPgdTYG6FLfo5mGLdIMw0zlDLAEzndBtIA5lokOkQCPEtCfw521whfkJeRRgLHh6d5-Qbxfvvp5_WF1-fv_xfH25csqoeQUBFHadF05oNCF4oRvJvfLchF52RrXSeDB9bxrjWug7BgGlN7pDoTBoeULe7L03Sz-hdxhrydHe5GGCvLMJBvtvEoeNvUpba1hT5W0VvLwT5PRjwTLbaSgOxxEipqVYoTVnnWilqOiL_9DrtORYv2eF4qpVVdlU6mxPuZxKyRgOZTizt5PZt-zL-vdk6wo_v1__gP4ZqALP9kAu7pD-3Vz-Ah00nHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414740545</pqid></control><display><type>article</type><title>Molecular dynamics study of convective heat transfer mechanism in a nano heat exchanger</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Sun, Haiyi ; Li, Fei ; Wang, Man ; Xin, Gongming ; Wang, Xinyu</creator><creatorcontrib>Sun, Haiyi ; Li, Fei ; Wang, Man ; Xin, Gongming ; Wang, Xinyu</creatorcontrib><description>With the rapid development of micro/nano electro-mechanical systems, the convective heat transfer at the micro/nanoscale has been widely studied for the thermal management of micro/nano devices. Here we investigate the convective heat transfer mechanism of a nano heat exchanger by the employment of molecular dynamics simulation with a modified thermal pump method. First, the temperature jump and velocity slip are observed at the wall-fluid interfaces of the nano heat exchanger. Moreover, the larger Kapitza resistance in the entrance region weakens the convective heat transfer. Second, the heat transfer performance of the nano heat exchanger can be improved by increasing the surface wettability of the solid walls owing to more fluid atoms being involved in heat transport at the walls when the wall-fluid interaction is enhanced. Meanwhile, the strong surface wettability results in the appearance of the quasi-solid fluid layers, which improves the heat transfer between walls and fluids. Finally, we point out that when the surface wettability of the nano heat exchanger is weak, the heat transfer of the hot fluid side is better than that of the cold fluid side, while the convective heat transfer performances of the cold and hot fluid sides are reversed when the surface wettability is strong. This is because of the feebler temperature jump of the hot fluid side when wall-fluid interaction is small and the greater velocity slip of the cold fluid side for walls with large wall-fluid interaction. The convective heat transfer mechanism in a nano heat exchanger is investigated using molecular dynamics simulation.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d0ra04295a</identifier><identifier>PMID: 35520315</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemistry ; Convective heat transfer ; Fluids ; Heat exchangers ; Heat transfer ; Kapitza resistance ; Mechanical systems ; Molecular dynamics ; Slip ; Thermal management ; Walls ; Wettability</subject><ispartof>RSC advances, 2020-06, Vol.1 (39), p.2397-2317</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-afa4e88d2c26e9ffd26531d4d19fb3894739da9bb959c7ab80afe3d968e24ef63</citedby><cites>FETCH-LOGICAL-c494t-afa4e88d2c26e9ffd26531d4d19fb3894739da9bb959c7ab80afe3d968e24ef63</cites><orcidid>0000-0003-4143-334X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054737/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054737/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35520315$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Haiyi</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Wang, Man</creatorcontrib><creatorcontrib>Xin, Gongming</creatorcontrib><creatorcontrib>Wang, Xinyu</creatorcontrib><title>Molecular dynamics study of convective heat transfer mechanism in a nano heat exchanger</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>With the rapid development of micro/nano electro-mechanical systems, the convective heat transfer at the micro/nanoscale has been widely studied for the thermal management of micro/nano devices. Here we investigate the convective heat transfer mechanism of a nano heat exchanger by the employment of molecular dynamics simulation with a modified thermal pump method. First, the temperature jump and velocity slip are observed at the wall-fluid interfaces of the nano heat exchanger. Moreover, the larger Kapitza resistance in the entrance region weakens the convective heat transfer. Second, the heat transfer performance of the nano heat exchanger can be improved by increasing the surface wettability of the solid walls owing to more fluid atoms being involved in heat transport at the walls when the wall-fluid interaction is enhanced. Meanwhile, the strong surface wettability results in the appearance of the quasi-solid fluid layers, which improves the heat transfer between walls and fluids. Finally, we point out that when the surface wettability of the nano heat exchanger is weak, the heat transfer of the hot fluid side is better than that of the cold fluid side, while the convective heat transfer performances of the cold and hot fluid sides are reversed when the surface wettability is strong. This is because of the feebler temperature jump of the hot fluid side when wall-fluid interaction is small and the greater velocity slip of the cold fluid side for walls with large wall-fluid interaction. The convective heat transfer mechanism in a nano heat exchanger is investigated using molecular dynamics simulation.</description><subject>Chemistry</subject><subject>Convective heat transfer</subject><subject>Fluids</subject><subject>Heat exchangers</subject><subject>Heat transfer</subject><subject>Kapitza resistance</subject><subject>Mechanical systems</subject><subject>Molecular dynamics</subject><subject>Slip</subject><subject>Thermal management</subject><subject>Walls</subject><subject>Wettability</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkc9rFDEYhoMottRevCsBL1JYza_JTC7CUq0KFUEUj-Gb5Et3ykxSk5nF_e9N3bpWc0ngfXh4w0vIU85ecSbNa88yMCVMAw_IsWBKrwTT5uG99xE5LeWa1aMbLjR_TI5k0wgmeXNMvn9KI7plhEz9LsI0uELLvPgdTYG6FLfo5mGLdIMw0zlDLAEzndBtIA5lokOkQCPEtCfw521whfkJeRRgLHh6d5-Qbxfvvp5_WF1-fv_xfH25csqoeQUBFHadF05oNCF4oRvJvfLchF52RrXSeDB9bxrjWug7BgGlN7pDoTBoeULe7L03Sz-hdxhrydHe5GGCvLMJBvtvEoeNvUpba1hT5W0VvLwT5PRjwTLbaSgOxxEipqVYoTVnnWilqOiL_9DrtORYv2eF4qpVVdlU6mxPuZxKyRgOZTizt5PZt-zL-vdk6wo_v1__gP4ZqALP9kAu7pD-3Vz-Ah00nHQ</recordid><startdate>20200617</startdate><enddate>20200617</enddate><creator>Sun, Haiyi</creator><creator>Li, Fei</creator><creator>Wang, Man</creator><creator>Xin, Gongming</creator><creator>Wang, Xinyu</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4143-334X</orcidid></search><sort><creationdate>20200617</creationdate><title>Molecular dynamics study of convective heat transfer mechanism in a nano heat exchanger</title><author>Sun, Haiyi ; Li, Fei ; Wang, Man ; Xin, Gongming ; Wang, Xinyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-afa4e88d2c26e9ffd26531d4d19fb3894739da9bb959c7ab80afe3d968e24ef63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Convective heat transfer</topic><topic>Fluids</topic><topic>Heat exchangers</topic><topic>Heat transfer</topic><topic>Kapitza resistance</topic><topic>Mechanical systems</topic><topic>Molecular dynamics</topic><topic>Slip</topic><topic>Thermal management</topic><topic>Walls</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Haiyi</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Wang, Man</creatorcontrib><creatorcontrib>Xin, Gongming</creatorcontrib><creatorcontrib>Wang, Xinyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Haiyi</au><au>Li, Fei</au><au>Wang, Man</au><au>Xin, Gongming</au><au>Wang, Xinyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics study of convective heat transfer mechanism in a nano heat exchanger</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2020-06-17</date><risdate>2020</risdate><volume>1</volume><issue>39</issue><spage>2397</spage><epage>2317</epage><pages>2397-2317</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>With the rapid development of micro/nano electro-mechanical systems, the convective heat transfer at the micro/nanoscale has been widely studied for the thermal management of micro/nano devices. Here we investigate the convective heat transfer mechanism of a nano heat exchanger by the employment of molecular dynamics simulation with a modified thermal pump method. First, the temperature jump and velocity slip are observed at the wall-fluid interfaces of the nano heat exchanger. Moreover, the larger Kapitza resistance in the entrance region weakens the convective heat transfer. Second, the heat transfer performance of the nano heat exchanger can be improved by increasing the surface wettability of the solid walls owing to more fluid atoms being involved in heat transport at the walls when the wall-fluid interaction is enhanced. Meanwhile, the strong surface wettability results in the appearance of the quasi-solid fluid layers, which improves the heat transfer between walls and fluids. Finally, we point out that when the surface wettability of the nano heat exchanger is weak, the heat transfer of the hot fluid side is better than that of the cold fluid side, while the convective heat transfer performances of the cold and hot fluid sides are reversed when the surface wettability is strong. This is because of the feebler temperature jump of the hot fluid side when wall-fluid interaction is small and the greater velocity slip of the cold fluid side for walls with large wall-fluid interaction. The convective heat transfer mechanism in a nano heat exchanger is investigated using molecular dynamics simulation.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35520315</pmid><doi>10.1039/d0ra04295a</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4143-334X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2020-06, Vol.1 (39), p.2397-2317
issn 2046-2069
2046-2069
language eng
recordid cdi_proquest_miscellaneous_2661082732
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Chemistry
Convective heat transfer
Fluids
Heat exchangers
Heat transfer
Kapitza resistance
Mechanical systems
Molecular dynamics
Slip
Thermal management
Walls
Wettability
title Molecular dynamics study of convective heat transfer mechanism in a nano heat exchanger
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A21%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20study%20of%20convective%20heat%20transfer%20mechanism%20in%20a%20nano%20heat%20exchanger&rft.jtitle=RSC%20advances&rft.au=Sun,%20Haiyi&rft.date=2020-06-17&rft.volume=1&rft.issue=39&rft.spage=2397&rft.epage=2317&rft.pages=2397-2317&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d0ra04295a&rft_dat=%3Cproquest_pubme%3E2414740545%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414740545&rft_id=info:pmid/35520315&rfr_iscdi=true