Molecular dynamics study of convective heat transfer mechanism in a nano heat exchanger
With the rapid development of micro/nano electro-mechanical systems, the convective heat transfer at the micro/nanoscale has been widely studied for the thermal management of micro/nano devices. Here we investigate the convective heat transfer mechanism of a nano heat exchanger by the employment of...
Gespeichert in:
Veröffentlicht in: | RSC advances 2020-06, Vol.1 (39), p.2397-2317 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2317 |
---|---|
container_issue | 39 |
container_start_page | 2397 |
container_title | RSC advances |
container_volume | 1 |
creator | Sun, Haiyi Li, Fei Wang, Man Xin, Gongming Wang, Xinyu |
description | With the rapid development of micro/nano electro-mechanical systems, the convective heat transfer at the micro/nanoscale has been widely studied for the thermal management of micro/nano devices. Here we investigate the convective heat transfer mechanism of a nano heat exchanger by the employment of molecular dynamics simulation with a modified thermal pump method. First, the temperature jump and velocity slip are observed at the wall-fluid interfaces of the nano heat exchanger. Moreover, the larger Kapitza resistance in the entrance region weakens the convective heat transfer. Second, the heat transfer performance of the nano heat exchanger can be improved by increasing the surface wettability of the solid walls owing to more fluid atoms being involved in heat transport at the walls when the wall-fluid interaction is enhanced. Meanwhile, the strong surface wettability results in the appearance of the quasi-solid fluid layers, which improves the heat transfer between walls and fluids. Finally, we point out that when the surface wettability of the nano heat exchanger is weak, the heat transfer of the hot fluid side is better than that of the cold fluid side, while the convective heat transfer performances of the cold and hot fluid sides are reversed when the surface wettability is strong. This is because of the feebler temperature jump of the hot fluid side when wall-fluid interaction is small and the greater velocity slip of the cold fluid side for walls with large wall-fluid interaction.
The convective heat transfer mechanism in a nano heat exchanger is investigated using molecular dynamics simulation. |
doi_str_mv | 10.1039/d0ra04295a |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2661082732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2414740545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-afa4e88d2c26e9ffd26531d4d19fb3894739da9bb959c7ab80afe3d968e24ef63</originalsourceid><addsrcrecordid>eNpdkc9rFDEYhoMottRevCsBL1JYza_JTC7CUq0KFUEUj-Gb5Et3ykxSk5nF_e9N3bpWc0ngfXh4w0vIU85ecSbNa88yMCVMAw_IsWBKrwTT5uG99xE5LeWa1aMbLjR_TI5k0wgmeXNMvn9KI7plhEz9LsI0uELLvPgdTYG6FLfo5mGLdIMw0zlDLAEzndBtIA5lokOkQCPEtCfw521whfkJeRRgLHh6d5-Qbxfvvp5_WF1-fv_xfH25csqoeQUBFHadF05oNCF4oRvJvfLchF52RrXSeDB9bxrjWug7BgGlN7pDoTBoeULe7L03Sz-hdxhrydHe5GGCvLMJBvtvEoeNvUpba1hT5W0VvLwT5PRjwTLbaSgOxxEipqVYoTVnnWilqOiL_9DrtORYv2eF4qpVVdlU6mxPuZxKyRgOZTizt5PZt-zL-vdk6wo_v1__gP4ZqALP9kAu7pD-3Vz-Ah00nHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414740545</pqid></control><display><type>article</type><title>Molecular dynamics study of convective heat transfer mechanism in a nano heat exchanger</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Sun, Haiyi ; Li, Fei ; Wang, Man ; Xin, Gongming ; Wang, Xinyu</creator><creatorcontrib>Sun, Haiyi ; Li, Fei ; Wang, Man ; Xin, Gongming ; Wang, Xinyu</creatorcontrib><description>With the rapid development of micro/nano electro-mechanical systems, the convective heat transfer at the micro/nanoscale has been widely studied for the thermal management of micro/nano devices. Here we investigate the convective heat transfer mechanism of a nano heat exchanger by the employment of molecular dynamics simulation with a modified thermal pump method. First, the temperature jump and velocity slip are observed at the wall-fluid interfaces of the nano heat exchanger. Moreover, the larger Kapitza resistance in the entrance region weakens the convective heat transfer. Second, the heat transfer performance of the nano heat exchanger can be improved by increasing the surface wettability of the solid walls owing to more fluid atoms being involved in heat transport at the walls when the wall-fluid interaction is enhanced. Meanwhile, the strong surface wettability results in the appearance of the quasi-solid fluid layers, which improves the heat transfer between walls and fluids. Finally, we point out that when the surface wettability of the nano heat exchanger is weak, the heat transfer of the hot fluid side is better than that of the cold fluid side, while the convective heat transfer performances of the cold and hot fluid sides are reversed when the surface wettability is strong. This is because of the feebler temperature jump of the hot fluid side when wall-fluid interaction is small and the greater velocity slip of the cold fluid side for walls with large wall-fluid interaction.
The convective heat transfer mechanism in a nano heat exchanger is investigated using molecular dynamics simulation.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d0ra04295a</identifier><identifier>PMID: 35520315</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemistry ; Convective heat transfer ; Fluids ; Heat exchangers ; Heat transfer ; Kapitza resistance ; Mechanical systems ; Molecular dynamics ; Slip ; Thermal management ; Walls ; Wettability</subject><ispartof>RSC advances, 2020-06, Vol.1 (39), p.2397-2317</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-afa4e88d2c26e9ffd26531d4d19fb3894739da9bb959c7ab80afe3d968e24ef63</citedby><cites>FETCH-LOGICAL-c494t-afa4e88d2c26e9ffd26531d4d19fb3894739da9bb959c7ab80afe3d968e24ef63</cites><orcidid>0000-0003-4143-334X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054737/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054737/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35520315$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Haiyi</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Wang, Man</creatorcontrib><creatorcontrib>Xin, Gongming</creatorcontrib><creatorcontrib>Wang, Xinyu</creatorcontrib><title>Molecular dynamics study of convective heat transfer mechanism in a nano heat exchanger</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>With the rapid development of micro/nano electro-mechanical systems, the convective heat transfer at the micro/nanoscale has been widely studied for the thermal management of micro/nano devices. Here we investigate the convective heat transfer mechanism of a nano heat exchanger by the employment of molecular dynamics simulation with a modified thermal pump method. First, the temperature jump and velocity slip are observed at the wall-fluid interfaces of the nano heat exchanger. Moreover, the larger Kapitza resistance in the entrance region weakens the convective heat transfer. Second, the heat transfer performance of the nano heat exchanger can be improved by increasing the surface wettability of the solid walls owing to more fluid atoms being involved in heat transport at the walls when the wall-fluid interaction is enhanced. Meanwhile, the strong surface wettability results in the appearance of the quasi-solid fluid layers, which improves the heat transfer between walls and fluids. Finally, we point out that when the surface wettability of the nano heat exchanger is weak, the heat transfer of the hot fluid side is better than that of the cold fluid side, while the convective heat transfer performances of the cold and hot fluid sides are reversed when the surface wettability is strong. This is because of the feebler temperature jump of the hot fluid side when wall-fluid interaction is small and the greater velocity slip of the cold fluid side for walls with large wall-fluid interaction.
The convective heat transfer mechanism in a nano heat exchanger is investigated using molecular dynamics simulation.</description><subject>Chemistry</subject><subject>Convective heat transfer</subject><subject>Fluids</subject><subject>Heat exchangers</subject><subject>Heat transfer</subject><subject>Kapitza resistance</subject><subject>Mechanical systems</subject><subject>Molecular dynamics</subject><subject>Slip</subject><subject>Thermal management</subject><subject>Walls</subject><subject>Wettability</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkc9rFDEYhoMottRevCsBL1JYza_JTC7CUq0KFUEUj-Gb5Et3ykxSk5nF_e9N3bpWc0ngfXh4w0vIU85ecSbNa88yMCVMAw_IsWBKrwTT5uG99xE5LeWa1aMbLjR_TI5k0wgmeXNMvn9KI7plhEz9LsI0uELLvPgdTYG6FLfo5mGLdIMw0zlDLAEzndBtIA5lokOkQCPEtCfw521whfkJeRRgLHh6d5-Qbxfvvp5_WF1-fv_xfH25csqoeQUBFHadF05oNCF4oRvJvfLchF52RrXSeDB9bxrjWug7BgGlN7pDoTBoeULe7L03Sz-hdxhrydHe5GGCvLMJBvtvEoeNvUpba1hT5W0VvLwT5PRjwTLbaSgOxxEipqVYoTVnnWilqOiL_9DrtORYv2eF4qpVVdlU6mxPuZxKyRgOZTizt5PZt-zL-vdk6wo_v1__gP4ZqALP9kAu7pD-3Vz-Ah00nHQ</recordid><startdate>20200617</startdate><enddate>20200617</enddate><creator>Sun, Haiyi</creator><creator>Li, Fei</creator><creator>Wang, Man</creator><creator>Xin, Gongming</creator><creator>Wang, Xinyu</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4143-334X</orcidid></search><sort><creationdate>20200617</creationdate><title>Molecular dynamics study of convective heat transfer mechanism in a nano heat exchanger</title><author>Sun, Haiyi ; Li, Fei ; Wang, Man ; Xin, Gongming ; Wang, Xinyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-afa4e88d2c26e9ffd26531d4d19fb3894739da9bb959c7ab80afe3d968e24ef63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Convective heat transfer</topic><topic>Fluids</topic><topic>Heat exchangers</topic><topic>Heat transfer</topic><topic>Kapitza resistance</topic><topic>Mechanical systems</topic><topic>Molecular dynamics</topic><topic>Slip</topic><topic>Thermal management</topic><topic>Walls</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Haiyi</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Wang, Man</creatorcontrib><creatorcontrib>Xin, Gongming</creatorcontrib><creatorcontrib>Wang, Xinyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Haiyi</au><au>Li, Fei</au><au>Wang, Man</au><au>Xin, Gongming</au><au>Wang, Xinyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics study of convective heat transfer mechanism in a nano heat exchanger</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2020-06-17</date><risdate>2020</risdate><volume>1</volume><issue>39</issue><spage>2397</spage><epage>2317</epage><pages>2397-2317</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>With the rapid development of micro/nano electro-mechanical systems, the convective heat transfer at the micro/nanoscale has been widely studied for the thermal management of micro/nano devices. Here we investigate the convective heat transfer mechanism of a nano heat exchanger by the employment of molecular dynamics simulation with a modified thermal pump method. First, the temperature jump and velocity slip are observed at the wall-fluid interfaces of the nano heat exchanger. Moreover, the larger Kapitza resistance in the entrance region weakens the convective heat transfer. Second, the heat transfer performance of the nano heat exchanger can be improved by increasing the surface wettability of the solid walls owing to more fluid atoms being involved in heat transport at the walls when the wall-fluid interaction is enhanced. Meanwhile, the strong surface wettability results in the appearance of the quasi-solid fluid layers, which improves the heat transfer between walls and fluids. Finally, we point out that when the surface wettability of the nano heat exchanger is weak, the heat transfer of the hot fluid side is better than that of the cold fluid side, while the convective heat transfer performances of the cold and hot fluid sides are reversed when the surface wettability is strong. This is because of the feebler temperature jump of the hot fluid side when wall-fluid interaction is small and the greater velocity slip of the cold fluid side for walls with large wall-fluid interaction.
The convective heat transfer mechanism in a nano heat exchanger is investigated using molecular dynamics simulation.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35520315</pmid><doi>10.1039/d0ra04295a</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4143-334X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2020-06, Vol.1 (39), p.2397-2317 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_proquest_miscellaneous_2661082732 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Chemistry Convective heat transfer Fluids Heat exchangers Heat transfer Kapitza resistance Mechanical systems Molecular dynamics Slip Thermal management Walls Wettability |
title | Molecular dynamics study of convective heat transfer mechanism in a nano heat exchanger |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A21%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20study%20of%20convective%20heat%20transfer%20mechanism%20in%20a%20nano%20heat%20exchanger&rft.jtitle=RSC%20advances&rft.au=Sun,%20Haiyi&rft.date=2020-06-17&rft.volume=1&rft.issue=39&rft.spage=2397&rft.epage=2317&rft.pages=2397-2317&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d0ra04295a&rft_dat=%3Cproquest_pubme%3E2414740545%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414740545&rft_id=info:pmid/35520315&rfr_iscdi=true |