Effect of polyvinylpyrrolidone (PVP) on palladium catalysts for direct synthesis of hydrogen peroxide from hydrogen and oxygen
When synthesizing nanoparticles in the liquid phase, polymeric materials (mainly polyvinylpyrrolidone, PVP) are applied as capping and/or stabilizing agents. The polymer layer on the nanoparticles must likely be removed since it blocks the active sites of the catalyst and inhibits mass transfer of t...
Gespeichert in:
Veröffentlicht in: | RSC advances 2020-05, Vol.1 (34), p.19952-1996 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1996 |
---|---|
container_issue | 34 |
container_start_page | 19952 |
container_title | RSC advances |
container_volume | 1 |
creator | Han, Geun-Ho Lee, Seok-Ho Seo, Myung-gi Lee, Kwan-Young |
description | When synthesizing nanoparticles in the liquid phase, polymeric materials (mainly polyvinylpyrrolidone, PVP) are applied as capping and/or stabilizing agents. The polymer layer on the nanoparticles must likely be removed since it blocks the active sites of the catalyst and inhibits mass transfer of the reactants. However, we have found that the polymer can have a positive effect on the direct synthesis of hydrogen peroxide. By testing Pd/SiO
2
catalysts with different amounts of PVP, it was revealed that an adequate amount of PVP resulted in a higher rate of hydrogen peroxide production (1001 mmol
H
2
O
2
g
Pd
−1
h
−1
) than pristine Pd/SiO
2
did (750 mmol
H
2
O
2
g
Pd
−1
h
−1
), unlike other PVP added Pd/SiO
2
catalysts containing excess PVP (less than 652 mmol
H
2
O
2
g
Pd
−1
h
−1
). The effect of PVP on the catalysts was examined by transmission electron microscopy, Fourier transform infrared spectroscopy, CO chemisorption, thermogravimetric analysis, and X-ray photoelectron spectroscopy. For the catalysts containing PVP, the oxidation state of the palladium 3d shifted to high binding energy due to electron transfer from Pd to the PVP molecules. Consequently, the presence of PVP on the catalysts inhibited oxygen dissociation and decomposition of the produced hydrogen peroxide, resulting in a high selectivity and high production rate of hydrogen peroxide.
Addition of polyvinylpyrrolidone to Pd/SiO
2
catalyst improved H
2
O
2
selectivity by adjusting electronic state of palladium active species. |
doi_str_mv | 10.1039/d0ra03148h |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_miscellaneous_2661082664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661082664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-44bf492f5e2ba9aee7a4cee5089eea67cb3aba0b38b6a2b2cc21552ac89940dd3</originalsourceid><addsrcrecordid>eNqNksFvFCEUxidGY5vai3fNGC-tZhUYhhkuJs22WpMmNka9EgYeXZoZmAJTOxf_dlm3bqsHIwd4gd_35cFHUTzF6A1GFX-rUZCowrRdPSh2CaJsQRDjD-_VO8V-jJcoD1ZjwvDjYqeqa5LFzW7x48QYUKn0phx9P19bN_fjHILvrfYOyoPzb-eHpXflKPteajsNpZJJ9nNMsTQ-lNqGtT7OLq0g2rh2Ws06-AvIIgj-xmooTfDD3bZ0uvQ3cy6fFI-M7CPs3657xdf3J1-Wp4uzTx8-Lo_OFio3mhaUdoZyYmogneQSoJFUAdSo5QCSNaqrZCdRV7Udk6QjShGcryhVyzlFWld7xbuN7zh1A2gFLgXZizHYQYZZeGnFnyfOrsSFvxYc1ZTQKhsc3BoEfzVBTGKwUUF-Ewd-ioIwhlGbZ5rRl3-hl34KLl9PEIoaUjWMtZl6taFU8DEGMNtmMBLrZMUx-nz0K9nTDD-_3_4W_Z1jBl5vgO_QeROVBadgi-Xoa4o5YixXmGe6_X96aZNM1ruln1zK0hcbaYhqq7j7g2LUJjPP_sVUPwHd2dgD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407237668</pqid></control><display><type>article</type><title>Effect of polyvinylpyrrolidone (PVP) on palladium catalysts for direct synthesis of hydrogen peroxide from hydrogen and oxygen</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><creator>Han, Geun-Ho ; Lee, Seok-Ho ; Seo, Myung-gi ; Lee, Kwan-Young</creator><creatorcontrib>Han, Geun-Ho ; Lee, Seok-Ho ; Seo, Myung-gi ; Lee, Kwan-Young</creatorcontrib><description>When synthesizing nanoparticles in the liquid phase, polymeric materials (mainly polyvinylpyrrolidone, PVP) are applied as capping and/or stabilizing agents. The polymer layer on the nanoparticles must likely be removed since it blocks the active sites of the catalyst and inhibits mass transfer of the reactants. However, we have found that the polymer can have a positive effect on the direct synthesis of hydrogen peroxide. By testing Pd/SiO
2
catalysts with different amounts of PVP, it was revealed that an adequate amount of PVP resulted in a higher rate of hydrogen peroxide production (1001 mmol
H
2
O
2
g
Pd
−1
h
−1
) than pristine Pd/SiO
2
did (750 mmol
H
2
O
2
g
Pd
−1
h
−1
), unlike other PVP added Pd/SiO
2
catalysts containing excess PVP (less than 652 mmol
H
2
O
2
g
Pd
−1
h
−1
). The effect of PVP on the catalysts was examined by transmission electron microscopy, Fourier transform infrared spectroscopy, CO chemisorption, thermogravimetric analysis, and X-ray photoelectron spectroscopy. For the catalysts containing PVP, the oxidation state of the palladium 3d shifted to high binding energy due to electron transfer from Pd to the PVP molecules. Consequently, the presence of PVP on the catalysts inhibited oxygen dissociation and decomposition of the produced hydrogen peroxide, resulting in a high selectivity and high production rate of hydrogen peroxide.
Addition of polyvinylpyrrolidone to Pd/SiO
2
catalyst improved H
2
O
2
selectivity by adjusting electronic state of palladium active species.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d0ra03148h</identifier><identifier>PMID: 35520397</identifier><language>eng</language><publisher>CAMBRIDGE: Royal Soc Chemistry</publisher><subject>Catalysts ; Chemical synthesis ; Chemisorption ; Chemistry ; Chemistry, Multidisciplinary ; Electron transfer ; Fourier transforms ; Hydrogen peroxide ; Infrared analysis ; Liquid phases ; Mass transfer ; Nanoparticles ; Oxidation ; Palladium ; Photoelectrons ; Physical Sciences ; Polymers ; Polyvinylpyrrolidone ; Science & Technology ; Selectivity ; Silicon dioxide ; Spectrum analysis ; Stabilizers (agents) ; Thermogravimetric analysis ; Valence</subject><ispartof>RSC advances, 2020-05, Vol.1 (34), p.19952-1996</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>23</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000541906600019</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c520t-44bf492f5e2ba9aee7a4cee5089eea67cb3aba0b38b6a2b2cc21552ac89940dd3</citedby><cites>FETCH-LOGICAL-c520t-44bf492f5e2ba9aee7a4cee5089eea67cb3aba0b38b6a2b2cc21552ac89940dd3</cites><orcidid>0000-0002-5637-1009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054243/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054243/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2116,27931,27932,28255,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35520397$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Geun-Ho</creatorcontrib><creatorcontrib>Lee, Seok-Ho</creatorcontrib><creatorcontrib>Seo, Myung-gi</creatorcontrib><creatorcontrib>Lee, Kwan-Young</creatorcontrib><title>Effect of polyvinylpyrrolidone (PVP) on palladium catalysts for direct synthesis of hydrogen peroxide from hydrogen and oxygen</title><title>RSC advances</title><addtitle>RSC ADV</addtitle><addtitle>RSC Adv</addtitle><description>When synthesizing nanoparticles in the liquid phase, polymeric materials (mainly polyvinylpyrrolidone, PVP) are applied as capping and/or stabilizing agents. The polymer layer on the nanoparticles must likely be removed since it blocks the active sites of the catalyst and inhibits mass transfer of the reactants. However, we have found that the polymer can have a positive effect on the direct synthesis of hydrogen peroxide. By testing Pd/SiO
2
catalysts with different amounts of PVP, it was revealed that an adequate amount of PVP resulted in a higher rate of hydrogen peroxide production (1001 mmol
H
2
O
2
g
Pd
−1
h
−1
) than pristine Pd/SiO
2
did (750 mmol
H
2
O
2
g
Pd
−1
h
−1
), unlike other PVP added Pd/SiO
2
catalysts containing excess PVP (less than 652 mmol
H
2
O
2
g
Pd
−1
h
−1
). The effect of PVP on the catalysts was examined by transmission electron microscopy, Fourier transform infrared spectroscopy, CO chemisorption, thermogravimetric analysis, and X-ray photoelectron spectroscopy. For the catalysts containing PVP, the oxidation state of the palladium 3d shifted to high binding energy due to electron transfer from Pd to the PVP molecules. Consequently, the presence of PVP on the catalysts inhibited oxygen dissociation and decomposition of the produced hydrogen peroxide, resulting in a high selectivity and high production rate of hydrogen peroxide.
Addition of polyvinylpyrrolidone to Pd/SiO
2
catalyst improved H
2
O
2
selectivity by adjusting electronic state of palladium active species.</description><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Chemisorption</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Electron transfer</subject><subject>Fourier transforms</subject><subject>Hydrogen peroxide</subject><subject>Infrared analysis</subject><subject>Liquid phases</subject><subject>Mass transfer</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Palladium</subject><subject>Photoelectrons</subject><subject>Physical Sciences</subject><subject>Polymers</subject><subject>Polyvinylpyrrolidone</subject><subject>Science & Technology</subject><subject>Selectivity</subject><subject>Silicon dioxide</subject><subject>Spectrum analysis</subject><subject>Stabilizers (agents)</subject><subject>Thermogravimetric analysis</subject><subject>Valence</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNksFvFCEUxidGY5vai3fNGC-tZhUYhhkuJs22WpMmNka9EgYeXZoZmAJTOxf_dlm3bqsHIwd4gd_35cFHUTzF6A1GFX-rUZCowrRdPSh2CaJsQRDjD-_VO8V-jJcoD1ZjwvDjYqeqa5LFzW7x48QYUKn0phx9P19bN_fjHILvrfYOyoPzb-eHpXflKPteajsNpZJJ9nNMsTQ-lNqGtT7OLq0g2rh2Ws06-AvIIgj-xmooTfDD3bZ0uvQ3cy6fFI-M7CPs3657xdf3J1-Wp4uzTx8-Lo_OFio3mhaUdoZyYmogneQSoJFUAdSo5QCSNaqrZCdRV7Udk6QjShGcryhVyzlFWld7xbuN7zh1A2gFLgXZizHYQYZZeGnFnyfOrsSFvxYc1ZTQKhsc3BoEfzVBTGKwUUF-Ewd-ioIwhlGbZ5rRl3-hl34KLl9PEIoaUjWMtZl6taFU8DEGMNtmMBLrZMUx-nz0K9nTDD-_3_4W_Z1jBl5vgO_QeROVBadgi-Xoa4o5YixXmGe6_X96aZNM1ruln1zK0hcbaYhqq7j7g2LUJjPP_sVUPwHd2dgD</recordid><startdate>20200527</startdate><enddate>20200527</enddate><creator>Han, Geun-Ho</creator><creator>Lee, Seok-Ho</creator><creator>Seo, Myung-gi</creator><creator>Lee, Kwan-Young</creator><general>Royal Soc Chemistry</general><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5637-1009</orcidid></search><sort><creationdate>20200527</creationdate><title>Effect of polyvinylpyrrolidone (PVP) on palladium catalysts for direct synthesis of hydrogen peroxide from hydrogen and oxygen</title><author>Han, Geun-Ho ; Lee, Seok-Ho ; Seo, Myung-gi ; Lee, Kwan-Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-44bf492f5e2ba9aee7a4cee5089eea67cb3aba0b38b6a2b2cc21552ac89940dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Chemisorption</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Electron transfer</topic><topic>Fourier transforms</topic><topic>Hydrogen peroxide</topic><topic>Infrared analysis</topic><topic>Liquid phases</topic><topic>Mass transfer</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Palladium</topic><topic>Photoelectrons</topic><topic>Physical Sciences</topic><topic>Polymers</topic><topic>Polyvinylpyrrolidone</topic><topic>Science & Technology</topic><topic>Selectivity</topic><topic>Silicon dioxide</topic><topic>Spectrum analysis</topic><topic>Stabilizers (agents)</topic><topic>Thermogravimetric analysis</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Geun-Ho</creatorcontrib><creatorcontrib>Lee, Seok-Ho</creatorcontrib><creatorcontrib>Seo, Myung-gi</creatorcontrib><creatorcontrib>Lee, Kwan-Young</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Geun-Ho</au><au>Lee, Seok-Ho</au><au>Seo, Myung-gi</au><au>Lee, Kwan-Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of polyvinylpyrrolidone (PVP) on palladium catalysts for direct synthesis of hydrogen peroxide from hydrogen and oxygen</atitle><jtitle>RSC advances</jtitle><stitle>RSC ADV</stitle><addtitle>RSC Adv</addtitle><date>2020-05-27</date><risdate>2020</risdate><volume>1</volume><issue>34</issue><spage>19952</spage><epage>1996</epage><pages>19952-1996</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>When synthesizing nanoparticles in the liquid phase, polymeric materials (mainly polyvinylpyrrolidone, PVP) are applied as capping and/or stabilizing agents. The polymer layer on the nanoparticles must likely be removed since it blocks the active sites of the catalyst and inhibits mass transfer of the reactants. However, we have found that the polymer can have a positive effect on the direct synthesis of hydrogen peroxide. By testing Pd/SiO
2
catalysts with different amounts of PVP, it was revealed that an adequate amount of PVP resulted in a higher rate of hydrogen peroxide production (1001 mmol
H
2
O
2
g
Pd
−1
h
−1
) than pristine Pd/SiO
2
did (750 mmol
H
2
O
2
g
Pd
−1
h
−1
), unlike other PVP added Pd/SiO
2
catalysts containing excess PVP (less than 652 mmol
H
2
O
2
g
Pd
−1
h
−1
). The effect of PVP on the catalysts was examined by transmission electron microscopy, Fourier transform infrared spectroscopy, CO chemisorption, thermogravimetric analysis, and X-ray photoelectron spectroscopy. For the catalysts containing PVP, the oxidation state of the palladium 3d shifted to high binding energy due to electron transfer from Pd to the PVP molecules. Consequently, the presence of PVP on the catalysts inhibited oxygen dissociation and decomposition of the produced hydrogen peroxide, resulting in a high selectivity and high production rate of hydrogen peroxide.
Addition of polyvinylpyrrolidone to Pd/SiO
2
catalyst improved H
2
O
2
selectivity by adjusting electronic state of palladium active species.</abstract><cop>CAMBRIDGE</cop><pub>Royal Soc Chemistry</pub><pmid>35520397</pmid><doi>10.1039/d0ra03148h</doi><orcidid>https://orcid.org/0000-0002-5637-1009</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2020-05, Vol.1 (34), p.19952-1996 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_proquest_miscellaneous_2661082664 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central |
subjects | Catalysts Chemical synthesis Chemisorption Chemistry Chemistry, Multidisciplinary Electron transfer Fourier transforms Hydrogen peroxide Infrared analysis Liquid phases Mass transfer Nanoparticles Oxidation Palladium Photoelectrons Physical Sciences Polymers Polyvinylpyrrolidone Science & Technology Selectivity Silicon dioxide Spectrum analysis Stabilizers (agents) Thermogravimetric analysis Valence |
title | Effect of polyvinylpyrrolidone (PVP) on palladium catalysts for direct synthesis of hydrogen peroxide from hydrogen and oxygen |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T06%3A14%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20polyvinylpyrrolidone%20(PVP)%20on%20palladium%20catalysts%20for%20direct%20synthesis%20of%20hydrogen%20peroxide%20from%20hydrogen%20and%20oxygen&rft.jtitle=RSC%20advances&rft.au=Han,%20Geun-Ho&rft.date=2020-05-27&rft.volume=1&rft.issue=34&rft.spage=19952&rft.epage=1996&rft.pages=19952-1996&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d0ra03148h&rft_dat=%3Cproquest_webof%3E2661082664%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407237668&rft_id=info:pmid/35520397&rfr_iscdi=true |