Automatic detection model of hypertrophic cardiomyopathy based on deep convolutional neural network
The diagnosis of hypertrophic cardiomyopathy (HCM) is of great significance for the early risk classification of sudden cardiac death and the screening of family genetic diseases. This research proposed a HCM automatic detection method based on convolution neural network (CNN) model, using single-le...
Gespeichert in:
Veröffentlicht in: | Sheng wu yi xue gong cheng xue za zhi 2022-04, Vol.39 (2), p.285-292 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 292 |
---|---|
container_issue | 2 |
container_start_page | 285 |
container_title | Sheng wu yi xue gong cheng xue za zhi |
container_volume | 39 |
creator | Bu, Yuxiang Cha, Xingzeng Zhu, Jinling Su, Ye Lai, Dakun |
description | The diagnosis of hypertrophic cardiomyopathy (HCM) is of great significance for the early risk classification of sudden cardiac death and the screening of family genetic diseases. This research proposed a HCM automatic detection method based on convolution neural network (CNN) model, using single-lead electrocardiogram (ECG) signal as the research object. Firstly, the R-wave peak locations of single-lead ECG signal were determined, followed by the ECG signal segmentation and resample in units of heart beats, then a CNN model was built to automatically extract the deep features in the ECG signal and perform automatic classification and HCM detection. The experimental data is derived from 108 ECG records extracted from three public databases provided by PhysioNet, the database established in this research consists of 14,459 heartbeats, and each heartbeat contains 128 sampling points. The results revealed that the optimized CNN model could effectively detect HCM, the accuracy, sensitivity and specificity were 95 |
doi_str_mv | 10.7507/1001-5515.202109046 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2661077178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661077178</sourcerecordid><originalsourceid>FETCH-LOGICAL-p126t-94e0f63dec961a4a3f76e66ed90dc01f5bb408d60c5af63ca01e5e1057cabd213</originalsourceid><addsrcrecordid>eNo9kD1PwzAYhD2AaFX6C5CQR5aU13HsJGNV8SVVYoE5cuw3SkQSG9sB5d8ToDCddPfcDUfIFYNdLiC_ZQAsEYKJXQopgxIyeUbW_-6KbEPoaoC0ACkLfkFWXIiUi6xcE72foh1U7DQ1GFHHzo50sAZ7ahvazg599Na1S66VN50dZutUbGdaq4CGLrRBdFTb8cP203dd9XTEyf9I_LT-7ZKcN6oPuD3phrze370cHpPj88PTYX9MHEtlTMoMoZHcoC4lU5niTS5RSjQlGA2sEXWdQWEkaKEWTitgKJCByLWqTcr4htz87jpv3ycMsRq6oLHv1Yh2ClUqJYM8Z3mxoNcndKoHNJXz3aD8XP0dw78A9WZnLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661077178</pqid></control><display><type>article</type><title>Automatic detection model of hypertrophic cardiomyopathy based on deep convolutional neural network</title><source>MEDLINE</source><source>PubMed Central</source><creator>Bu, Yuxiang ; Cha, Xingzeng ; Zhu, Jinling ; Su, Ye ; Lai, Dakun</creator><creatorcontrib>Bu, Yuxiang ; Cha, Xingzeng ; Zhu, Jinling ; Su, Ye ; Lai, Dakun</creatorcontrib><description>The diagnosis of hypertrophic cardiomyopathy (HCM) is of great significance for the early risk classification of sudden cardiac death and the screening of family genetic diseases. This research proposed a HCM automatic detection method based on convolution neural network (CNN) model, using single-lead electrocardiogram (ECG) signal as the research object. Firstly, the R-wave peak locations of single-lead ECG signal were determined, followed by the ECG signal segmentation and resample in units of heart beats, then a CNN model was built to automatically extract the deep features in the ECG signal and perform automatic classification and HCM detection. The experimental data is derived from 108 ECG records extracted from three public databases provided by PhysioNet, the database established in this research consists of 14,459 heartbeats, and each heartbeat contains 128 sampling points. The results revealed that the optimized CNN model could effectively detect HCM, the accuracy, sensitivity and specificity were 95</description><identifier>ISSN: 1001-5515</identifier><identifier>DOI: 10.7507/1001-5515.202109046</identifier><identifier>PMID: 35523549</identifier><language>chi</language><publisher>China</publisher><subject>Algorithms ; Cardiomyopathy, Hypertrophic - diagnosis ; Databases, Factual ; Electrocardiography ; Heart Rate ; Humans ; Neural Networks, Computer</subject><ispartof>Sheng wu yi xue gong cheng xue za zhi, 2022-04, Vol.39 (2), p.285-292</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35523549$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bu, Yuxiang</creatorcontrib><creatorcontrib>Cha, Xingzeng</creatorcontrib><creatorcontrib>Zhu, Jinling</creatorcontrib><creatorcontrib>Su, Ye</creatorcontrib><creatorcontrib>Lai, Dakun</creatorcontrib><title>Automatic detection model of hypertrophic cardiomyopathy based on deep convolutional neural network</title><title>Sheng wu yi xue gong cheng xue za zhi</title><addtitle>Sheng Wu Yi Xue Gong Cheng Xue Za Zhi</addtitle><description>The diagnosis of hypertrophic cardiomyopathy (HCM) is of great significance for the early risk classification of sudden cardiac death and the screening of family genetic diseases. This research proposed a HCM automatic detection method based on convolution neural network (CNN) model, using single-lead electrocardiogram (ECG) signal as the research object. Firstly, the R-wave peak locations of single-lead ECG signal were determined, followed by the ECG signal segmentation and resample in units of heart beats, then a CNN model was built to automatically extract the deep features in the ECG signal and perform automatic classification and HCM detection. The experimental data is derived from 108 ECG records extracted from three public databases provided by PhysioNet, the database established in this research consists of 14,459 heartbeats, and each heartbeat contains 128 sampling points. The results revealed that the optimized CNN model could effectively detect HCM, the accuracy, sensitivity and specificity were 95</description><subject>Algorithms</subject><subject>Cardiomyopathy, Hypertrophic - diagnosis</subject><subject>Databases, Factual</subject><subject>Electrocardiography</subject><subject>Heart Rate</subject><subject>Humans</subject><subject>Neural Networks, Computer</subject><issn>1001-5515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kD1PwzAYhD2AaFX6C5CQR5aU13HsJGNV8SVVYoE5cuw3SkQSG9sB5d8ToDCddPfcDUfIFYNdLiC_ZQAsEYKJXQopgxIyeUbW_-6KbEPoaoC0ACkLfkFWXIiUi6xcE72foh1U7DQ1GFHHzo50sAZ7ahvazg599Na1S66VN50dZutUbGdaq4CGLrRBdFTb8cP203dd9XTEyf9I_LT-7ZKcN6oPuD3phrze370cHpPj88PTYX9MHEtlTMoMoZHcoC4lU5niTS5RSjQlGA2sEXWdQWEkaKEWTitgKJCByLWqTcr4htz87jpv3ycMsRq6oLHv1Yh2ClUqJYM8Z3mxoNcndKoHNJXz3aD8XP0dw78A9WZnLw</recordid><startdate>20220425</startdate><enddate>20220425</enddate><creator>Bu, Yuxiang</creator><creator>Cha, Xingzeng</creator><creator>Zhu, Jinling</creator><creator>Su, Ye</creator><creator>Lai, Dakun</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20220425</creationdate><title>Automatic detection model of hypertrophic cardiomyopathy based on deep convolutional neural network</title><author>Bu, Yuxiang ; Cha, Xingzeng ; Zhu, Jinling ; Su, Ye ; Lai, Dakun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p126t-94e0f63dec961a4a3f76e66ed90dc01f5bb408d60c5af63ca01e5e1057cabd213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cardiomyopathy, Hypertrophic - diagnosis</topic><topic>Databases, Factual</topic><topic>Electrocardiography</topic><topic>Heart Rate</topic><topic>Humans</topic><topic>Neural Networks, Computer</topic><toplevel>online_resources</toplevel><creatorcontrib>Bu, Yuxiang</creatorcontrib><creatorcontrib>Cha, Xingzeng</creatorcontrib><creatorcontrib>Zhu, Jinling</creatorcontrib><creatorcontrib>Su, Ye</creatorcontrib><creatorcontrib>Lai, Dakun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Sheng wu yi xue gong cheng xue za zhi</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bu, Yuxiang</au><au>Cha, Xingzeng</au><au>Zhu, Jinling</au><au>Su, Ye</au><au>Lai, Dakun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic detection model of hypertrophic cardiomyopathy based on deep convolutional neural network</atitle><jtitle>Sheng wu yi xue gong cheng xue za zhi</jtitle><addtitle>Sheng Wu Yi Xue Gong Cheng Xue Za Zhi</addtitle><date>2022-04-25</date><risdate>2022</risdate><volume>39</volume><issue>2</issue><spage>285</spage><epage>292</epage><pages>285-292</pages><issn>1001-5515</issn><abstract>The diagnosis of hypertrophic cardiomyopathy (HCM) is of great significance for the early risk classification of sudden cardiac death and the screening of family genetic diseases. This research proposed a HCM automatic detection method based on convolution neural network (CNN) model, using single-lead electrocardiogram (ECG) signal as the research object. Firstly, the R-wave peak locations of single-lead ECG signal were determined, followed by the ECG signal segmentation and resample in units of heart beats, then a CNN model was built to automatically extract the deep features in the ECG signal and perform automatic classification and HCM detection. The experimental data is derived from 108 ECG records extracted from three public databases provided by PhysioNet, the database established in this research consists of 14,459 heartbeats, and each heartbeat contains 128 sampling points. The results revealed that the optimized CNN model could effectively detect HCM, the accuracy, sensitivity and specificity were 95</abstract><cop>China</cop><pmid>35523549</pmid><doi>10.7507/1001-5515.202109046</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-5515 |
ispartof | Sheng wu yi xue gong cheng xue za zhi, 2022-04, Vol.39 (2), p.285-292 |
issn | 1001-5515 |
language | chi |
recordid | cdi_proquest_miscellaneous_2661077178 |
source | MEDLINE; PubMed Central |
subjects | Algorithms Cardiomyopathy, Hypertrophic - diagnosis Databases, Factual Electrocardiography Heart Rate Humans Neural Networks, Computer |
title | Automatic detection model of hypertrophic cardiomyopathy based on deep convolutional neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A14%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20detection%20model%20of%20hypertrophic%20cardiomyopathy%20based%20on%20deep%20convolutional%20neural%20network&rft.jtitle=Sheng%20wu%20yi%20xue%20gong%20cheng%20xue%20za%20zhi&rft.au=Bu,%20Yuxiang&rft.date=2022-04-25&rft.volume=39&rft.issue=2&rft.spage=285&rft.epage=292&rft.pages=285-292&rft.issn=1001-5515&rft_id=info:doi/10.7507/1001-5515.202109046&rft_dat=%3Cproquest_pubme%3E2661077178%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2661077178&rft_id=info:pmid/35523549&rfr_iscdi=true |