Automatic detection model of hypertrophic cardiomyopathy based on deep convolutional neural network

The diagnosis of hypertrophic cardiomyopathy (HCM) is of great significance for the early risk classification of sudden cardiac death and the screening of family genetic diseases. This research proposed a HCM automatic detection method based on convolution neural network (CNN) model, using single-le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sheng wu yi xue gong cheng xue za zhi 2022-04, Vol.39 (2), p.285-292
Hauptverfasser: Bu, Yuxiang, Cha, Xingzeng, Zhu, Jinling, Su, Ye, Lai, Dakun
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 292
container_issue 2
container_start_page 285
container_title Sheng wu yi xue gong cheng xue za zhi
container_volume 39
creator Bu, Yuxiang
Cha, Xingzeng
Zhu, Jinling
Su, Ye
Lai, Dakun
description The diagnosis of hypertrophic cardiomyopathy (HCM) is of great significance for the early risk classification of sudden cardiac death and the screening of family genetic diseases. This research proposed a HCM automatic detection method based on convolution neural network (CNN) model, using single-lead electrocardiogram (ECG) signal as the research object. Firstly, the R-wave peak locations of single-lead ECG signal were determined, followed by the ECG signal segmentation and resample in units of heart beats, then a CNN model was built to automatically extract the deep features in the ECG signal and perform automatic classification and HCM detection. The experimental data is derived from 108 ECG records extracted from three public databases provided by PhysioNet, the database established in this research consists of 14,459 heartbeats, and each heartbeat contains 128 sampling points. The results revealed that the optimized CNN model could effectively detect HCM, the accuracy, sensitivity and specificity were 95
doi_str_mv 10.7507/1001-5515.202109046
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2661077178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661077178</sourcerecordid><originalsourceid>FETCH-LOGICAL-p126t-94e0f63dec961a4a3f76e66ed90dc01f5bb408d60c5af63ca01e5e1057cabd213</originalsourceid><addsrcrecordid>eNo9kD1PwzAYhD2AaFX6C5CQR5aU13HsJGNV8SVVYoE5cuw3SkQSG9sB5d8ToDCddPfcDUfIFYNdLiC_ZQAsEYKJXQopgxIyeUbW_-6KbEPoaoC0ACkLfkFWXIiUi6xcE72foh1U7DQ1GFHHzo50sAZ7ahvazg599Na1S66VN50dZutUbGdaq4CGLrRBdFTb8cP203dd9XTEyf9I_LT-7ZKcN6oPuD3phrze370cHpPj88PTYX9MHEtlTMoMoZHcoC4lU5niTS5RSjQlGA2sEXWdQWEkaKEWTitgKJCByLWqTcr4htz87jpv3ycMsRq6oLHv1Yh2ClUqJYM8Z3mxoNcndKoHNJXz3aD8XP0dw78A9WZnLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661077178</pqid></control><display><type>article</type><title>Automatic detection model of hypertrophic cardiomyopathy based on deep convolutional neural network</title><source>MEDLINE</source><source>PubMed Central</source><creator>Bu, Yuxiang ; Cha, Xingzeng ; Zhu, Jinling ; Su, Ye ; Lai, Dakun</creator><creatorcontrib>Bu, Yuxiang ; Cha, Xingzeng ; Zhu, Jinling ; Su, Ye ; Lai, Dakun</creatorcontrib><description>The diagnosis of hypertrophic cardiomyopathy (HCM) is of great significance for the early risk classification of sudden cardiac death and the screening of family genetic diseases. This research proposed a HCM automatic detection method based on convolution neural network (CNN) model, using single-lead electrocardiogram (ECG) signal as the research object. Firstly, the R-wave peak locations of single-lead ECG signal were determined, followed by the ECG signal segmentation and resample in units of heart beats, then a CNN model was built to automatically extract the deep features in the ECG signal and perform automatic classification and HCM detection. The experimental data is derived from 108 ECG records extracted from three public databases provided by PhysioNet, the database established in this research consists of 14,459 heartbeats, and each heartbeat contains 128 sampling points. The results revealed that the optimized CNN model could effectively detect HCM, the accuracy, sensitivity and specificity were 95</description><identifier>ISSN: 1001-5515</identifier><identifier>DOI: 10.7507/1001-5515.202109046</identifier><identifier>PMID: 35523549</identifier><language>chi</language><publisher>China</publisher><subject>Algorithms ; Cardiomyopathy, Hypertrophic - diagnosis ; Databases, Factual ; Electrocardiography ; Heart Rate ; Humans ; Neural Networks, Computer</subject><ispartof>Sheng wu yi xue gong cheng xue za zhi, 2022-04, Vol.39 (2), p.285-292</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35523549$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bu, Yuxiang</creatorcontrib><creatorcontrib>Cha, Xingzeng</creatorcontrib><creatorcontrib>Zhu, Jinling</creatorcontrib><creatorcontrib>Su, Ye</creatorcontrib><creatorcontrib>Lai, Dakun</creatorcontrib><title>Automatic detection model of hypertrophic cardiomyopathy based on deep convolutional neural network</title><title>Sheng wu yi xue gong cheng xue za zhi</title><addtitle>Sheng Wu Yi Xue Gong Cheng Xue Za Zhi</addtitle><description>The diagnosis of hypertrophic cardiomyopathy (HCM) is of great significance for the early risk classification of sudden cardiac death and the screening of family genetic diseases. This research proposed a HCM automatic detection method based on convolution neural network (CNN) model, using single-lead electrocardiogram (ECG) signal as the research object. Firstly, the R-wave peak locations of single-lead ECG signal were determined, followed by the ECG signal segmentation and resample in units of heart beats, then a CNN model was built to automatically extract the deep features in the ECG signal and perform automatic classification and HCM detection. The experimental data is derived from 108 ECG records extracted from three public databases provided by PhysioNet, the database established in this research consists of 14,459 heartbeats, and each heartbeat contains 128 sampling points. The results revealed that the optimized CNN model could effectively detect HCM, the accuracy, sensitivity and specificity were 95</description><subject>Algorithms</subject><subject>Cardiomyopathy, Hypertrophic - diagnosis</subject><subject>Databases, Factual</subject><subject>Electrocardiography</subject><subject>Heart Rate</subject><subject>Humans</subject><subject>Neural Networks, Computer</subject><issn>1001-5515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kD1PwzAYhD2AaFX6C5CQR5aU13HsJGNV8SVVYoE5cuw3SkQSG9sB5d8ToDCddPfcDUfIFYNdLiC_ZQAsEYKJXQopgxIyeUbW_-6KbEPoaoC0ACkLfkFWXIiUi6xcE72foh1U7DQ1GFHHzo50sAZ7ahvazg599Na1S66VN50dZutUbGdaq4CGLrRBdFTb8cP203dd9XTEyf9I_LT-7ZKcN6oPuD3phrze370cHpPj88PTYX9MHEtlTMoMoZHcoC4lU5niTS5RSjQlGA2sEXWdQWEkaKEWTitgKJCByLWqTcr4htz87jpv3ycMsRq6oLHv1Yh2ClUqJYM8Z3mxoNcndKoHNJXz3aD8XP0dw78A9WZnLw</recordid><startdate>20220425</startdate><enddate>20220425</enddate><creator>Bu, Yuxiang</creator><creator>Cha, Xingzeng</creator><creator>Zhu, Jinling</creator><creator>Su, Ye</creator><creator>Lai, Dakun</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20220425</creationdate><title>Automatic detection model of hypertrophic cardiomyopathy based on deep convolutional neural network</title><author>Bu, Yuxiang ; Cha, Xingzeng ; Zhu, Jinling ; Su, Ye ; Lai, Dakun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p126t-94e0f63dec961a4a3f76e66ed90dc01f5bb408d60c5af63ca01e5e1057cabd213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cardiomyopathy, Hypertrophic - diagnosis</topic><topic>Databases, Factual</topic><topic>Electrocardiography</topic><topic>Heart Rate</topic><topic>Humans</topic><topic>Neural Networks, Computer</topic><toplevel>online_resources</toplevel><creatorcontrib>Bu, Yuxiang</creatorcontrib><creatorcontrib>Cha, Xingzeng</creatorcontrib><creatorcontrib>Zhu, Jinling</creatorcontrib><creatorcontrib>Su, Ye</creatorcontrib><creatorcontrib>Lai, Dakun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Sheng wu yi xue gong cheng xue za zhi</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bu, Yuxiang</au><au>Cha, Xingzeng</au><au>Zhu, Jinling</au><au>Su, Ye</au><au>Lai, Dakun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic detection model of hypertrophic cardiomyopathy based on deep convolutional neural network</atitle><jtitle>Sheng wu yi xue gong cheng xue za zhi</jtitle><addtitle>Sheng Wu Yi Xue Gong Cheng Xue Za Zhi</addtitle><date>2022-04-25</date><risdate>2022</risdate><volume>39</volume><issue>2</issue><spage>285</spage><epage>292</epage><pages>285-292</pages><issn>1001-5515</issn><abstract>The diagnosis of hypertrophic cardiomyopathy (HCM) is of great significance for the early risk classification of sudden cardiac death and the screening of family genetic diseases. This research proposed a HCM automatic detection method based on convolution neural network (CNN) model, using single-lead electrocardiogram (ECG) signal as the research object. Firstly, the R-wave peak locations of single-lead ECG signal were determined, followed by the ECG signal segmentation and resample in units of heart beats, then a CNN model was built to automatically extract the deep features in the ECG signal and perform automatic classification and HCM detection. The experimental data is derived from 108 ECG records extracted from three public databases provided by PhysioNet, the database established in this research consists of 14,459 heartbeats, and each heartbeat contains 128 sampling points. The results revealed that the optimized CNN model could effectively detect HCM, the accuracy, sensitivity and specificity were 95</abstract><cop>China</cop><pmid>35523549</pmid><doi>10.7507/1001-5515.202109046</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1001-5515
ispartof Sheng wu yi xue gong cheng xue za zhi, 2022-04, Vol.39 (2), p.285-292
issn 1001-5515
language chi
recordid cdi_proquest_miscellaneous_2661077178
source MEDLINE; PubMed Central
subjects Algorithms
Cardiomyopathy, Hypertrophic - diagnosis
Databases, Factual
Electrocardiography
Heart Rate
Humans
Neural Networks, Computer
title Automatic detection model of hypertrophic cardiomyopathy based on deep convolutional neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A14%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20detection%20model%20of%20hypertrophic%20cardiomyopathy%20based%20on%20deep%20convolutional%20neural%20network&rft.jtitle=Sheng%20wu%20yi%20xue%20gong%20cheng%20xue%20za%20zhi&rft.au=Bu,%20Yuxiang&rft.date=2022-04-25&rft.volume=39&rft.issue=2&rft.spage=285&rft.epage=292&rft.pages=285-292&rft.issn=1001-5515&rft_id=info:doi/10.7507/1001-5515.202109046&rft_dat=%3Cproquest_pubme%3E2661077178%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2661077178&rft_id=info:pmid/35523549&rfr_iscdi=true