Light-to-Hydrogen Improvement Based on Three-Factored Au@CeO2/Gr Hierarchical Photocatalysts

Recently, various attempts have been made for light-to-fuels conversion, often with limited performance. Herein we report active and lasting three-factored hierarchical photocatalysts consisting of plasmon Au, ceria semiconductor, and graphene conductor for hydrogen production. The Au@CeO2/Gr2.0 ent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2022-05, Vol.16 (5), p.7848-7860
Hauptverfasser: Van Dao, Dung, Choi, Hyuk, Nguyen, Thuy T. D., Ki, Sang-Woo, Kim, Gyu-Cheol, Son, Hoki, Yang, Jin-Kyu, Yu, Yeon-Tae, Kim, Hyun You, Lee, In-Hwan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, various attempts have been made for light-to-fuels conversion, often with limited performance. Herein we report active and lasting three-factored hierarchical photocatalysts consisting of plasmon Au, ceria semiconductor, and graphene conductor for hydrogen production. The Au@CeO2/Gr2.0 entity (graphene outer shell thickness of 2.0 nm) under visible-light irradiation exhibits a colossal achievement (8.0 μmol mgcat –1 h–1), which is 2.2- and 14.3-fold higher than those of binary Au@CeO2 and free-standing CeO2 species, outperforming the currently available catalysts. Yet, it delivers a high maximum quantum yield efficiency of 38.4% at an incident wavelength of 560 nm. These improvements are unambiguously attributed to three indispensable effects: (1) the plasmon resonant energy is light-excited and transferred to produce hot electrons localizing near the surface of Au@CeO2, where (2) the high-surface-area Gr conductive shell will capture them to direct hydrogen evolution reactions, and (3) the active graphene hybridized on the defect-rich surface of Au@CeO2 favorably adsorbs hydrogen atoms, which all bring up thorough insight into the working of a ternary Au@CeO2/Gr catalyst system in terms of light-to-hydrogen conversion.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.2c00509