Dataset of Bessel function [formula omitted] maxima and minima to 600 orders and 10000 extrema

Bessel functions of the first kind are ubiquitous in the sciences and engineering in solutions to cylindrical problems including electrostatics, heat flow, and the Schrödinger equation. The roots of the Bessel functions are often quoted and calculated, but the maxima and minima for each Bessel funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Data in brief 2021-12, Vol.39 p.107508-
Hauptverfasser: Mecholsky, Nicholas A, Akhbarifar, Sepideh, Lutze, Werner, Brandys, Marek, Pegg, Ian L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Data in brief
container_volume 39 p.107508-
creator Mecholsky, Nicholas A
Akhbarifar, Sepideh
Lutze, Werner
Brandys, Marek
Pegg, Ian L
description Bessel functions of the first kind are ubiquitous in the sciences and engineering in solutions to cylindrical problems including electrostatics, heat flow, and the Schrödinger equation. The roots of the Bessel functions are often quoted and calculated, but the maxima and minima for each Bessel function, used to match Neumann boundary conditions, have not had the same treatment. Here we compute 10000 extrema for the first 600 orders of the Bessel function J. To do this, we employ an adaptive root solver bounded by the roots of the Bessel function and solve to an accuracy of 10−19. We compare with the existing literature (to 30 orders and 5 maxima and minima) and the results match exactly. It is hoped that these data provide values needed for orthogonal function expansions and numerical expressions including the calculation of geometric correction factors in the measurement of resistivity of materials, as is done in the original paper using these data.
doi_str_mv 10.1016/j.dib.2021.107508
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2661048893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661048893</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_26610488933</originalsourceid><addsrcrecordid>eNqVjLtOw0AQRVeISESQD6CbMk3M7PqB3YaA-IB0CKJJPJbW2gfsrKV8Pg6ioKW65z50lbrXWGjUzcNY9PZYGDR69o81tldqacrabMoKu-s_fKNWIiMi6rqaw3qpPnaUSThDHGDLIuxgmMIp2xjgbYjJT44gepsz9-_g6Ww9AYUevA0XzBEaRIip5yQ_hZ7vEficE3u6U4uBnPDqV2_V-uV5__S6-Uzxa2LJB2_lxM5R4DjJwTSNxqptu7L8x_Qbr-JN9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661048893</pqid></control><display><type>article</type><title>Dataset of Bessel function [formula omitted] maxima and minima to 600 orders and 10000 extrema</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Mecholsky, Nicholas A ; Akhbarifar, Sepideh ; Lutze, Werner ; Brandys, Marek ; Pegg, Ian L</creator><creatorcontrib>Mecholsky, Nicholas A ; Akhbarifar, Sepideh ; Lutze, Werner ; Brandys, Marek ; Pegg, Ian L</creatorcontrib><description>Bessel functions of the first kind are ubiquitous in the sciences and engineering in solutions to cylindrical problems including electrostatics, heat flow, and the Schrödinger equation. The roots of the Bessel functions are often quoted and calculated, but the maxima and minima for each Bessel function, used to match Neumann boundary conditions, have not had the same treatment. Here we compute 10000 extrema for the first 600 orders of the Bessel function J. To do this, we employ an adaptive root solver bounded by the roots of the Bessel function and solve to an accuracy of 10−19. We compare with the existing literature (to 30 orders and 5 maxima and minima) and the results match exactly. It is hoped that these data provide values needed for orthogonal function expansions and numerical expressions including the calculation of geometric correction factors in the measurement of resistivity of materials, as is done in the original paper using these data.</description><identifier>ISSN: 2352-3409</identifier><identifier>EISSN: 2352-3409</identifier><identifier>DOI: 10.1016/j.dib.2021.107508</identifier><language>eng</language><subject>data collection ; equations ; geometry ; heat flow</subject><ispartof>Data in brief, 2021-12, Vol.39 p.107508-</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Mecholsky, Nicholas A</creatorcontrib><creatorcontrib>Akhbarifar, Sepideh</creatorcontrib><creatorcontrib>Lutze, Werner</creatorcontrib><creatorcontrib>Brandys, Marek</creatorcontrib><creatorcontrib>Pegg, Ian L</creatorcontrib><title>Dataset of Bessel function [formula omitted] maxima and minima to 600 orders and 10000 extrema</title><title>Data in brief</title><description>Bessel functions of the first kind are ubiquitous in the sciences and engineering in solutions to cylindrical problems including electrostatics, heat flow, and the Schrödinger equation. The roots of the Bessel functions are often quoted and calculated, but the maxima and minima for each Bessel function, used to match Neumann boundary conditions, have not had the same treatment. Here we compute 10000 extrema for the first 600 orders of the Bessel function J. To do this, we employ an adaptive root solver bounded by the roots of the Bessel function and solve to an accuracy of 10−19. We compare with the existing literature (to 30 orders and 5 maxima and minima) and the results match exactly. It is hoped that these data provide values needed for orthogonal function expansions and numerical expressions including the calculation of geometric correction factors in the measurement of resistivity of materials, as is done in the original paper using these data.</description><subject>data collection</subject><subject>equations</subject><subject>geometry</subject><subject>heat flow</subject><issn>2352-3409</issn><issn>2352-3409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqVjLtOw0AQRVeISESQD6CbMk3M7PqB3YaA-IB0CKJJPJbW2gfsrKV8Pg6ioKW65z50lbrXWGjUzcNY9PZYGDR69o81tldqacrabMoKu-s_fKNWIiMi6rqaw3qpPnaUSThDHGDLIuxgmMIp2xjgbYjJT44gepsz9-_g6Ww9AYUevA0XzBEaRIip5yQ_hZ7vEficE3u6U4uBnPDqV2_V-uV5__S6-Uzxa2LJB2_lxM5R4DjJwTSNxqptu7L8x_Qbr-JN9w</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Mecholsky, Nicholas A</creator><creator>Akhbarifar, Sepideh</creator><creator>Lutze, Werner</creator><creator>Brandys, Marek</creator><creator>Pegg, Ian L</creator><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20211201</creationdate><title>Dataset of Bessel function [formula omitted] maxima and minima to 600 orders and 10000 extrema</title><author>Mecholsky, Nicholas A ; Akhbarifar, Sepideh ; Lutze, Werner ; Brandys, Marek ; Pegg, Ian L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_26610488933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>data collection</topic><topic>equations</topic><topic>geometry</topic><topic>heat flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mecholsky, Nicholas A</creatorcontrib><creatorcontrib>Akhbarifar, Sepideh</creatorcontrib><creatorcontrib>Lutze, Werner</creatorcontrib><creatorcontrib>Brandys, Marek</creatorcontrib><creatorcontrib>Pegg, Ian L</creatorcontrib><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Data in brief</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mecholsky, Nicholas A</au><au>Akhbarifar, Sepideh</au><au>Lutze, Werner</au><au>Brandys, Marek</au><au>Pegg, Ian L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dataset of Bessel function [formula omitted] maxima and minima to 600 orders and 10000 extrema</atitle><jtitle>Data in brief</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>39 p.107508-</volume><issn>2352-3409</issn><eissn>2352-3409</eissn><abstract>Bessel functions of the first kind are ubiquitous in the sciences and engineering in solutions to cylindrical problems including electrostatics, heat flow, and the Schrödinger equation. The roots of the Bessel functions are often quoted and calculated, but the maxima and minima for each Bessel function, used to match Neumann boundary conditions, have not had the same treatment. Here we compute 10000 extrema for the first 600 orders of the Bessel function J. To do this, we employ an adaptive root solver bounded by the roots of the Bessel function and solve to an accuracy of 10−19. We compare with the existing literature (to 30 orders and 5 maxima and minima) and the results match exactly. It is hoped that these data provide values needed for orthogonal function expansions and numerical expressions including the calculation of geometric correction factors in the measurement of resistivity of materials, as is done in the original paper using these data.</abstract><doi>10.1016/j.dib.2021.107508</doi></addata></record>
fulltext fulltext
identifier ISSN: 2352-3409
ispartof Data in brief, 2021-12, Vol.39 p.107508-
issn 2352-3409
2352-3409
language eng
recordid cdi_proquest_miscellaneous_2661048893
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects data collection
equations
geometry
heat flow
title Dataset of Bessel function [formula omitted] maxima and minima to 600 orders and 10000 extrema
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A55%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dataset%20of%20Bessel%20function%20%5Bformula%20omitted%5D%20maxima%20and%20minima%20to%20600%20orders%20and%2010000%20extrema&rft.jtitle=Data%20in%20brief&rft.au=Mecholsky,%20Nicholas%20A&rft.date=2021-12-01&rft.volume=39%20p.107508-&rft.issn=2352-3409&rft.eissn=2352-3409&rft_id=info:doi/10.1016/j.dib.2021.107508&rft_dat=%3Cproquest%3E2661048893%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2661048893&rft_id=info:pmid/&rfr_iscdi=true