Dataset of Bessel function [formula omitted] maxima and minima to 600 orders and 10000 extrema
Bessel functions of the first kind are ubiquitous in the sciences and engineering in solutions to cylindrical problems including electrostatics, heat flow, and the Schrödinger equation. The roots of the Bessel functions are often quoted and calculated, but the maxima and minima for each Bessel funct...
Gespeichert in:
Veröffentlicht in: | Data in brief 2021-12, Vol.39 p.107508- |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Data in brief |
container_volume | 39 p.107508- |
creator | Mecholsky, Nicholas A Akhbarifar, Sepideh Lutze, Werner Brandys, Marek Pegg, Ian L |
description | Bessel functions of the first kind are ubiquitous in the sciences and engineering in solutions to cylindrical problems including electrostatics, heat flow, and the Schrödinger equation. The roots of the Bessel functions are often quoted and calculated, but the maxima and minima for each Bessel function, used to match Neumann boundary conditions, have not had the same treatment. Here we compute 10000 extrema for the first 600 orders of the Bessel function J. To do this, we employ an adaptive root solver bounded by the roots of the Bessel function and solve to an accuracy of 10−19. We compare with the existing literature (to 30 orders and 5 maxima and minima) and the results match exactly. It is hoped that these data provide values needed for orthogonal function expansions and numerical expressions including the calculation of geometric correction factors in the measurement of resistivity of materials, as is done in the original paper using these data. |
doi_str_mv | 10.1016/j.dib.2021.107508 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2661048893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661048893</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_26610488933</originalsourceid><addsrcrecordid>eNqVjLtOw0AQRVeISESQD6CbMk3M7PqB3YaA-IB0CKJJPJbW2gfsrKV8Pg6ioKW65z50lbrXWGjUzcNY9PZYGDR69o81tldqacrabMoKu-s_fKNWIiMi6rqaw3qpPnaUSThDHGDLIuxgmMIp2xjgbYjJT44gepsz9-_g6Ww9AYUevA0XzBEaRIip5yQ_hZ7vEficE3u6U4uBnPDqV2_V-uV5__S6-Uzxa2LJB2_lxM5R4DjJwTSNxqptu7L8x_Qbr-JN9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661048893</pqid></control><display><type>article</type><title>Dataset of Bessel function [formula omitted] maxima and minima to 600 orders and 10000 extrema</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Mecholsky, Nicholas A ; Akhbarifar, Sepideh ; Lutze, Werner ; Brandys, Marek ; Pegg, Ian L</creator><creatorcontrib>Mecholsky, Nicholas A ; Akhbarifar, Sepideh ; Lutze, Werner ; Brandys, Marek ; Pegg, Ian L</creatorcontrib><description>Bessel functions of the first kind are ubiquitous in the sciences and engineering in solutions to cylindrical problems including electrostatics, heat flow, and the Schrödinger equation. The roots of the Bessel functions are often quoted and calculated, but the maxima and minima for each Bessel function, used to match Neumann boundary conditions, have not had the same treatment. Here we compute 10000 extrema for the first 600 orders of the Bessel function J. To do this, we employ an adaptive root solver bounded by the roots of the Bessel function and solve to an accuracy of 10−19. We compare with the existing literature (to 30 orders and 5 maxima and minima) and the results match exactly. It is hoped that these data provide values needed for orthogonal function expansions and numerical expressions including the calculation of geometric correction factors in the measurement of resistivity of materials, as is done in the original paper using these data.</description><identifier>ISSN: 2352-3409</identifier><identifier>EISSN: 2352-3409</identifier><identifier>DOI: 10.1016/j.dib.2021.107508</identifier><language>eng</language><subject>data collection ; equations ; geometry ; heat flow</subject><ispartof>Data in brief, 2021-12, Vol.39 p.107508-</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Mecholsky, Nicholas A</creatorcontrib><creatorcontrib>Akhbarifar, Sepideh</creatorcontrib><creatorcontrib>Lutze, Werner</creatorcontrib><creatorcontrib>Brandys, Marek</creatorcontrib><creatorcontrib>Pegg, Ian L</creatorcontrib><title>Dataset of Bessel function [formula omitted] maxima and minima to 600 orders and 10000 extrema</title><title>Data in brief</title><description>Bessel functions of the first kind are ubiquitous in the sciences and engineering in solutions to cylindrical problems including electrostatics, heat flow, and the Schrödinger equation. The roots of the Bessel functions are often quoted and calculated, but the maxima and minima for each Bessel function, used to match Neumann boundary conditions, have not had the same treatment. Here we compute 10000 extrema for the first 600 orders of the Bessel function J. To do this, we employ an adaptive root solver bounded by the roots of the Bessel function and solve to an accuracy of 10−19. We compare with the existing literature (to 30 orders and 5 maxima and minima) and the results match exactly. It is hoped that these data provide values needed for orthogonal function expansions and numerical expressions including the calculation of geometric correction factors in the measurement of resistivity of materials, as is done in the original paper using these data.</description><subject>data collection</subject><subject>equations</subject><subject>geometry</subject><subject>heat flow</subject><issn>2352-3409</issn><issn>2352-3409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqVjLtOw0AQRVeISESQD6CbMk3M7PqB3YaA-IB0CKJJPJbW2gfsrKV8Pg6ioKW65z50lbrXWGjUzcNY9PZYGDR69o81tldqacrabMoKu-s_fKNWIiMi6rqaw3qpPnaUSThDHGDLIuxgmMIp2xjgbYjJT44gepsz9-_g6Ww9AYUevA0XzBEaRIip5yQ_hZ7vEficE3u6U4uBnPDqV2_V-uV5__S6-Uzxa2LJB2_lxM5R4DjJwTSNxqptu7L8x_Qbr-JN9w</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Mecholsky, Nicholas A</creator><creator>Akhbarifar, Sepideh</creator><creator>Lutze, Werner</creator><creator>Brandys, Marek</creator><creator>Pegg, Ian L</creator><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20211201</creationdate><title>Dataset of Bessel function [formula omitted] maxima and minima to 600 orders and 10000 extrema</title><author>Mecholsky, Nicholas A ; Akhbarifar, Sepideh ; Lutze, Werner ; Brandys, Marek ; Pegg, Ian L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_26610488933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>data collection</topic><topic>equations</topic><topic>geometry</topic><topic>heat flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mecholsky, Nicholas A</creatorcontrib><creatorcontrib>Akhbarifar, Sepideh</creatorcontrib><creatorcontrib>Lutze, Werner</creatorcontrib><creatorcontrib>Brandys, Marek</creatorcontrib><creatorcontrib>Pegg, Ian L</creatorcontrib><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Data in brief</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mecholsky, Nicholas A</au><au>Akhbarifar, Sepideh</au><au>Lutze, Werner</au><au>Brandys, Marek</au><au>Pegg, Ian L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dataset of Bessel function [formula omitted] maxima and minima to 600 orders and 10000 extrema</atitle><jtitle>Data in brief</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>39 p.107508-</volume><issn>2352-3409</issn><eissn>2352-3409</eissn><abstract>Bessel functions of the first kind are ubiquitous in the sciences and engineering in solutions to cylindrical problems including electrostatics, heat flow, and the Schrödinger equation. The roots of the Bessel functions are often quoted and calculated, but the maxima and minima for each Bessel function, used to match Neumann boundary conditions, have not had the same treatment. Here we compute 10000 extrema for the first 600 orders of the Bessel function J. To do this, we employ an adaptive root solver bounded by the roots of the Bessel function and solve to an accuracy of 10−19. We compare with the existing literature (to 30 orders and 5 maxima and minima) and the results match exactly. It is hoped that these data provide values needed for orthogonal function expansions and numerical expressions including the calculation of geometric correction factors in the measurement of resistivity of materials, as is done in the original paper using these data.</abstract><doi>10.1016/j.dib.2021.107508</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2352-3409 |
ispartof | Data in brief, 2021-12, Vol.39 p.107508- |
issn | 2352-3409 2352-3409 |
language | eng |
recordid | cdi_proquest_miscellaneous_2661048893 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | data collection equations geometry heat flow |
title | Dataset of Bessel function [formula omitted] maxima and minima to 600 orders and 10000 extrema |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A55%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dataset%20of%20Bessel%20function%20%5Bformula%20omitted%5D%20maxima%20and%20minima%20to%20600%20orders%20and%2010000%20extrema&rft.jtitle=Data%20in%20brief&rft.au=Mecholsky,%20Nicholas%20A&rft.date=2021-12-01&rft.volume=39%20p.107508-&rft.issn=2352-3409&rft.eissn=2352-3409&rft_id=info:doi/10.1016/j.dib.2021.107508&rft_dat=%3Cproquest%3E2661048893%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2661048893&rft_id=info:pmid/&rfr_iscdi=true |