Prediction of enteric methane production and yield in dairy cattle using a Latin America and Caribbean database

Successful mitigation efforts entail accurate estimation of on-farm emission and prediction models can be an alternative to current laborious and costly in vivo CH4 measurement techniques. This study aimed to: (1) collate a database of individual dairy cattle CH4 emission data from studies conducted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2022-06, Vol.825, p.153982-153982, Article 153982
Hauptverfasser: Congio, Guilhermo F.S., Bannink, André, Mayorga, Olga L., Rodrigues, João P.P., Bougouin, Adeline, Kebreab, Ermias, Silva, Ricardo R., Maurício, Rogério M., da Silva, Sila C., Oliveira, Patrícia P.A., Muñoz, Camila, Pereira, Luiz G.R., Gómez, Carlos, Ariza-Nieto, Claudia, Ribeiro-Filho, Henrique M.N., Castelán-Ortega, Octavio A., Rosero-Noguera, Jaime R., Tieri, Maria P., Rodrigues, Paulo H.M., Marcondes, Marcos I., Astigarraga, Laura, Abarca, Sergio, Hristov, Alexander N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 153982
container_issue
container_start_page 153982
container_title The Science of the total environment
container_volume 825
creator Congio, Guilhermo F.S.
Bannink, André
Mayorga, Olga L.
Rodrigues, João P.P.
Bougouin, Adeline
Kebreab, Ermias
Silva, Ricardo R.
Maurício, Rogério M.
da Silva, Sila C.
Oliveira, Patrícia P.A.
Muñoz, Camila
Pereira, Luiz G.R.
Gómez, Carlos
Ariza-Nieto, Claudia
Ribeiro-Filho, Henrique M.N.
Castelán-Ortega, Octavio A.
Rosero-Noguera, Jaime R.
Tieri, Maria P.
Rodrigues, Paulo H.M.
Marcondes, Marcos I.
Astigarraga, Laura
Abarca, Sergio
Hristov, Alexander N.
description Successful mitigation efforts entail accurate estimation of on-farm emission and prediction models can be an alternative to current laborious and costly in vivo CH4 measurement techniques. This study aimed to: (1) collate a database of individual dairy cattle CH4 emission data from studies conducted in the Latin America and Caribbean (LAC) region; (2) identify key variables for predicting CH4 production (g d−1) and yield [g kg−1 of dry matter intake (DMI)]; (3) develop and cross-validate these newly-developed models; and (4) compare models' predictive ability with equations currently used to support national greenhouse gas (GHG) inventories. A total of 42 studies including 1327 individual dairy cattle records were collated. After removing outliers, the final database retained 34 studies and 610 animal records. Production and yield of CH4 were predicted by fitting mixed-effects models with a random effect of study. Evaluation of developed models and fourteen extant equations was assessed on all-data, confined, and grazing cows subsets. Feed intake was the most important predictor of CH4 production. Our best-developed CH4 production models outperformed Tier 2 equations from the Intergovernmental Panel on Climate Change (IPCC) in the all-data and grazing subsets, whereas they had similar performance for confined animals. Developed CH4 production models that include milk yield can be accurate and useful when feed intake is missing. Some extant equations had similar predictive performance to our best-developed models and can be an option for predicting CH4 production from LAC dairy cows. Extant equations were not accurate in predicting CH4 yield. The use of the newly-developed models rather than extant equations based on energy conversion factors, as applied by the IPCC, can substantially improve the accuracy of GHG inventories in LAC countries. [Display omitted] •Dry matter intake (DMI) was the most important predictor of dairy CH4 production.•Simple regression models including DMI were accurate for predicting CH4 production.•CH4 production can also be predicted using milk yield when DMI is missing.•Developed models outperformed IPCC Tier 2 equations.•These newly-developed models can improve the accuracy GHG inventories from LAC countries.
doi_str_mv 10.1016/j.scitotenv.2022.153982
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2661002658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969722010749</els_id><sourcerecordid>2633847241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-afacaebfa6e891eb7d5dee8b84dccea07579c458133b4f66a731214c1f09b71a3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi1ERZeWvwA-cslix4ntHFcrvqSV4NCerbE9Aa_yUWyn0v57HFJ6BV98mOed0cxDyDvO9pxx-eG8Ty7kOeP0uK9ZXe95KzpdvyA7rlVXcVbLl2THWKOrTnbqmrxO6czKU5q_IteiLSGpuh2Zv0f0weUwT3TuKU4ZY3B0xPwTJqQPcfbLVoXJ00vAwdMwUQ8hXqiDnAekSwrTDwr0BLmUDuPaAf7wR4jBWoQ1kMFCwlty1cOQ8M3Tf0PuP328O36pTt8-fz0eTpVrWpEr6MEB2h4k6o6jVb71iNrqxjuHwFSrukJqLoRteilBCV7zxvGedVZxEDfk_da3bPBrwZTNGJLDYShbzUsytZSclRu0-j9QIXSj6oYXVG2oi3NKEXvzEMMI8WI4M6sYczbPYswqxmxiSvLt05DFjuifc39NFOCwAViu8hgwro1wcsVORJeNn8M_h_wGfgyk7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633847241</pqid></control><display><type>article</type><title>Prediction of enteric methane production and yield in dairy cattle using a Latin America and Caribbean database</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Congio, Guilhermo F.S. ; Bannink, André ; Mayorga, Olga L. ; Rodrigues, João P.P. ; Bougouin, Adeline ; Kebreab, Ermias ; Silva, Ricardo R. ; Maurício, Rogério M. ; da Silva, Sila C. ; Oliveira, Patrícia P.A. ; Muñoz, Camila ; Pereira, Luiz G.R. ; Gómez, Carlos ; Ariza-Nieto, Claudia ; Ribeiro-Filho, Henrique M.N. ; Castelán-Ortega, Octavio A. ; Rosero-Noguera, Jaime R. ; Tieri, Maria P. ; Rodrigues, Paulo H.M. ; Marcondes, Marcos I. ; Astigarraga, Laura ; Abarca, Sergio ; Hristov, Alexander N.</creator><creatorcontrib>Congio, Guilhermo F.S. ; Bannink, André ; Mayorga, Olga L. ; Rodrigues, João P.P. ; Bougouin, Adeline ; Kebreab, Ermias ; Silva, Ricardo R. ; Maurício, Rogério M. ; da Silva, Sila C. ; Oliveira, Patrícia P.A. ; Muñoz, Camila ; Pereira, Luiz G.R. ; Gómez, Carlos ; Ariza-Nieto, Claudia ; Ribeiro-Filho, Henrique M.N. ; Castelán-Ortega, Octavio A. ; Rosero-Noguera, Jaime R. ; Tieri, Maria P. ; Rodrigues, Paulo H.M. ; Marcondes, Marcos I. ; Astigarraga, Laura ; Abarca, Sergio ; Hristov, Alexander N.</creatorcontrib><description>Successful mitigation efforts entail accurate estimation of on-farm emission and prediction models can be an alternative to current laborious and costly in vivo CH4 measurement techniques. This study aimed to: (1) collate a database of individual dairy cattle CH4 emission data from studies conducted in the Latin America and Caribbean (LAC) region; (2) identify key variables for predicting CH4 production (g d−1) and yield [g kg−1 of dry matter intake (DMI)]; (3) develop and cross-validate these newly-developed models; and (4) compare models' predictive ability with equations currently used to support national greenhouse gas (GHG) inventories. A total of 42 studies including 1327 individual dairy cattle records were collated. After removing outliers, the final database retained 34 studies and 610 animal records. Production and yield of CH4 were predicted by fitting mixed-effects models with a random effect of study. Evaluation of developed models and fourteen extant equations was assessed on all-data, confined, and grazing cows subsets. Feed intake was the most important predictor of CH4 production. Our best-developed CH4 production models outperformed Tier 2 equations from the Intergovernmental Panel on Climate Change (IPCC) in the all-data and grazing subsets, whereas they had similar performance for confined animals. Developed CH4 production models that include milk yield can be accurate and useful when feed intake is missing. Some extant equations had similar predictive performance to our best-developed models and can be an option for predicting CH4 production from LAC dairy cows. Extant equations were not accurate in predicting CH4 yield. The use of the newly-developed models rather than extant equations based on energy conversion factors, as applied by the IPCC, can substantially improve the accuracy of GHG inventories in LAC countries. [Display omitted] •Dry matter intake (DMI) was the most important predictor of dairy CH4 production.•Simple regression models including DMI were accurate for predicting CH4 production.•CH4 production can also be predicted using milk yield when DMI is missing.•Developed models outperformed IPCC Tier 2 equations.•These newly-developed models can improve the accuracy GHG inventories from LAC countries.</description><identifier>ISSN: 0048-9697</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2022.153982</identifier><identifier>PMID: 35202679</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Caribbean ; Cattle ; dairy cattle ; Diet ; Diet - veterinary ; dry matter intake ; Eating ; Empirical modeling ; energy conversion ; Enteric methane ; environment ; Female ; GHG inventory ; greenhouse gases ; Lactation ; Latin America ; Linear models ; Methane - analysis ; methane production ; Milk - chemistry ; milk yield ; prediction ; Prediction equations ; United Nations Framework Convention on Climate Change</subject><ispartof>The Science of the total environment, 2022-06, Vol.825, p.153982-153982, Article 153982</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright © 2022 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-afacaebfa6e891eb7d5dee8b84dccea07579c458133b4f66a731214c1f09b71a3</citedby><cites>FETCH-LOGICAL-c453t-afacaebfa6e891eb7d5dee8b84dccea07579c458133b4f66a731214c1f09b71a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.scitotenv.2022.153982$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35202679$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Congio, Guilhermo F.S.</creatorcontrib><creatorcontrib>Bannink, André</creatorcontrib><creatorcontrib>Mayorga, Olga L.</creatorcontrib><creatorcontrib>Rodrigues, João P.P.</creatorcontrib><creatorcontrib>Bougouin, Adeline</creatorcontrib><creatorcontrib>Kebreab, Ermias</creatorcontrib><creatorcontrib>Silva, Ricardo R.</creatorcontrib><creatorcontrib>Maurício, Rogério M.</creatorcontrib><creatorcontrib>da Silva, Sila C.</creatorcontrib><creatorcontrib>Oliveira, Patrícia P.A.</creatorcontrib><creatorcontrib>Muñoz, Camila</creatorcontrib><creatorcontrib>Pereira, Luiz G.R.</creatorcontrib><creatorcontrib>Gómez, Carlos</creatorcontrib><creatorcontrib>Ariza-Nieto, Claudia</creatorcontrib><creatorcontrib>Ribeiro-Filho, Henrique M.N.</creatorcontrib><creatorcontrib>Castelán-Ortega, Octavio A.</creatorcontrib><creatorcontrib>Rosero-Noguera, Jaime R.</creatorcontrib><creatorcontrib>Tieri, Maria P.</creatorcontrib><creatorcontrib>Rodrigues, Paulo H.M.</creatorcontrib><creatorcontrib>Marcondes, Marcos I.</creatorcontrib><creatorcontrib>Astigarraga, Laura</creatorcontrib><creatorcontrib>Abarca, Sergio</creatorcontrib><creatorcontrib>Hristov, Alexander N.</creatorcontrib><title>Prediction of enteric methane production and yield in dairy cattle using a Latin America and Caribbean database</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>Successful mitigation efforts entail accurate estimation of on-farm emission and prediction models can be an alternative to current laborious and costly in vivo CH4 measurement techniques. This study aimed to: (1) collate a database of individual dairy cattle CH4 emission data from studies conducted in the Latin America and Caribbean (LAC) region; (2) identify key variables for predicting CH4 production (g d−1) and yield [g kg−1 of dry matter intake (DMI)]; (3) develop and cross-validate these newly-developed models; and (4) compare models' predictive ability with equations currently used to support national greenhouse gas (GHG) inventories. A total of 42 studies including 1327 individual dairy cattle records were collated. After removing outliers, the final database retained 34 studies and 610 animal records. Production and yield of CH4 were predicted by fitting mixed-effects models with a random effect of study. Evaluation of developed models and fourteen extant equations was assessed on all-data, confined, and grazing cows subsets. Feed intake was the most important predictor of CH4 production. Our best-developed CH4 production models outperformed Tier 2 equations from the Intergovernmental Panel on Climate Change (IPCC) in the all-data and grazing subsets, whereas they had similar performance for confined animals. Developed CH4 production models that include milk yield can be accurate and useful when feed intake is missing. Some extant equations had similar predictive performance to our best-developed models and can be an option for predicting CH4 production from LAC dairy cows. Extant equations were not accurate in predicting CH4 yield. The use of the newly-developed models rather than extant equations based on energy conversion factors, as applied by the IPCC, can substantially improve the accuracy of GHG inventories in LAC countries. [Display omitted] •Dry matter intake (DMI) was the most important predictor of dairy CH4 production.•Simple regression models including DMI were accurate for predicting CH4 production.•CH4 production can also be predicted using milk yield when DMI is missing.•Developed models outperformed IPCC Tier 2 equations.•These newly-developed models can improve the accuracy GHG inventories from LAC countries.</description><subject>Animals</subject><subject>Caribbean</subject><subject>Cattle</subject><subject>dairy cattle</subject><subject>Diet</subject><subject>Diet - veterinary</subject><subject>dry matter intake</subject><subject>Eating</subject><subject>Empirical modeling</subject><subject>energy conversion</subject><subject>Enteric methane</subject><subject>environment</subject><subject>Female</subject><subject>GHG inventory</subject><subject>greenhouse gases</subject><subject>Lactation</subject><subject>Latin America</subject><subject>Linear models</subject><subject>Methane - analysis</subject><subject>methane production</subject><subject>Milk - chemistry</subject><subject>milk yield</subject><subject>prediction</subject><subject>Prediction equations</subject><subject>United Nations Framework Convention on Climate Change</subject><issn>0048-9697</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhi1ERZeWvwA-cslix4ntHFcrvqSV4NCerbE9Aa_yUWyn0v57HFJ6BV98mOed0cxDyDvO9pxx-eG8Ty7kOeP0uK9ZXe95KzpdvyA7rlVXcVbLl2THWKOrTnbqmrxO6czKU5q_IteiLSGpuh2Zv0f0weUwT3TuKU4ZY3B0xPwTJqQPcfbLVoXJ00vAwdMwUQ8hXqiDnAekSwrTDwr0BLmUDuPaAf7wR4jBWoQ1kMFCwlty1cOQ8M3Tf0PuP328O36pTt8-fz0eTpVrWpEr6MEB2h4k6o6jVb71iNrqxjuHwFSrukJqLoRteilBCV7zxvGedVZxEDfk_da3bPBrwZTNGJLDYShbzUsytZSclRu0-j9QIXSj6oYXVG2oi3NKEXvzEMMI8WI4M6sYczbPYswqxmxiSvLt05DFjuifc39NFOCwAViu8hgwro1wcsVORJeNn8M_h_wGfgyk7A</recordid><startdate>20220615</startdate><enddate>20220615</enddate><creator>Congio, Guilhermo F.S.</creator><creator>Bannink, André</creator><creator>Mayorga, Olga L.</creator><creator>Rodrigues, João P.P.</creator><creator>Bougouin, Adeline</creator><creator>Kebreab, Ermias</creator><creator>Silva, Ricardo R.</creator><creator>Maurício, Rogério M.</creator><creator>da Silva, Sila C.</creator><creator>Oliveira, Patrícia P.A.</creator><creator>Muñoz, Camila</creator><creator>Pereira, Luiz G.R.</creator><creator>Gómez, Carlos</creator><creator>Ariza-Nieto, Claudia</creator><creator>Ribeiro-Filho, Henrique M.N.</creator><creator>Castelán-Ortega, Octavio A.</creator><creator>Rosero-Noguera, Jaime R.</creator><creator>Tieri, Maria P.</creator><creator>Rodrigues, Paulo H.M.</creator><creator>Marcondes, Marcos I.</creator><creator>Astigarraga, Laura</creator><creator>Abarca, Sergio</creator><creator>Hristov, Alexander N.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20220615</creationdate><title>Prediction of enteric methane production and yield in dairy cattle using a Latin America and Caribbean database</title><author>Congio, Guilhermo F.S. ; Bannink, André ; Mayorga, Olga L. ; Rodrigues, João P.P. ; Bougouin, Adeline ; Kebreab, Ermias ; Silva, Ricardo R. ; Maurício, Rogério M. ; da Silva, Sila C. ; Oliveira, Patrícia P.A. ; Muñoz, Camila ; Pereira, Luiz G.R. ; Gómez, Carlos ; Ariza-Nieto, Claudia ; Ribeiro-Filho, Henrique M.N. ; Castelán-Ortega, Octavio A. ; Rosero-Noguera, Jaime R. ; Tieri, Maria P. ; Rodrigues, Paulo H.M. ; Marcondes, Marcos I. ; Astigarraga, Laura ; Abarca, Sergio ; Hristov, Alexander N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-afacaebfa6e891eb7d5dee8b84dccea07579c458133b4f66a731214c1f09b71a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Caribbean</topic><topic>Cattle</topic><topic>dairy cattle</topic><topic>Diet</topic><topic>Diet - veterinary</topic><topic>dry matter intake</topic><topic>Eating</topic><topic>Empirical modeling</topic><topic>energy conversion</topic><topic>Enteric methane</topic><topic>environment</topic><topic>Female</topic><topic>GHG inventory</topic><topic>greenhouse gases</topic><topic>Lactation</topic><topic>Latin America</topic><topic>Linear models</topic><topic>Methane - analysis</topic><topic>methane production</topic><topic>Milk - chemistry</topic><topic>milk yield</topic><topic>prediction</topic><topic>Prediction equations</topic><topic>United Nations Framework Convention on Climate Change</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Congio, Guilhermo F.S.</creatorcontrib><creatorcontrib>Bannink, André</creatorcontrib><creatorcontrib>Mayorga, Olga L.</creatorcontrib><creatorcontrib>Rodrigues, João P.P.</creatorcontrib><creatorcontrib>Bougouin, Adeline</creatorcontrib><creatorcontrib>Kebreab, Ermias</creatorcontrib><creatorcontrib>Silva, Ricardo R.</creatorcontrib><creatorcontrib>Maurício, Rogério M.</creatorcontrib><creatorcontrib>da Silva, Sila C.</creatorcontrib><creatorcontrib>Oliveira, Patrícia P.A.</creatorcontrib><creatorcontrib>Muñoz, Camila</creatorcontrib><creatorcontrib>Pereira, Luiz G.R.</creatorcontrib><creatorcontrib>Gómez, Carlos</creatorcontrib><creatorcontrib>Ariza-Nieto, Claudia</creatorcontrib><creatorcontrib>Ribeiro-Filho, Henrique M.N.</creatorcontrib><creatorcontrib>Castelán-Ortega, Octavio A.</creatorcontrib><creatorcontrib>Rosero-Noguera, Jaime R.</creatorcontrib><creatorcontrib>Tieri, Maria P.</creatorcontrib><creatorcontrib>Rodrigues, Paulo H.M.</creatorcontrib><creatorcontrib>Marcondes, Marcos I.</creatorcontrib><creatorcontrib>Astigarraga, Laura</creatorcontrib><creatorcontrib>Abarca, Sergio</creatorcontrib><creatorcontrib>Hristov, Alexander N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Congio, Guilhermo F.S.</au><au>Bannink, André</au><au>Mayorga, Olga L.</au><au>Rodrigues, João P.P.</au><au>Bougouin, Adeline</au><au>Kebreab, Ermias</au><au>Silva, Ricardo R.</au><au>Maurício, Rogério M.</au><au>da Silva, Sila C.</au><au>Oliveira, Patrícia P.A.</au><au>Muñoz, Camila</au><au>Pereira, Luiz G.R.</au><au>Gómez, Carlos</au><au>Ariza-Nieto, Claudia</au><au>Ribeiro-Filho, Henrique M.N.</au><au>Castelán-Ortega, Octavio A.</au><au>Rosero-Noguera, Jaime R.</au><au>Tieri, Maria P.</au><au>Rodrigues, Paulo H.M.</au><au>Marcondes, Marcos I.</au><au>Astigarraga, Laura</au><au>Abarca, Sergio</au><au>Hristov, Alexander N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of enteric methane production and yield in dairy cattle using a Latin America and Caribbean database</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2022-06-15</date><risdate>2022</risdate><volume>825</volume><spage>153982</spage><epage>153982</epage><pages>153982-153982</pages><artnum>153982</artnum><issn>0048-9697</issn><eissn>1879-1026</eissn><abstract>Successful mitigation efforts entail accurate estimation of on-farm emission and prediction models can be an alternative to current laborious and costly in vivo CH4 measurement techniques. This study aimed to: (1) collate a database of individual dairy cattle CH4 emission data from studies conducted in the Latin America and Caribbean (LAC) region; (2) identify key variables for predicting CH4 production (g d−1) and yield [g kg−1 of dry matter intake (DMI)]; (3) develop and cross-validate these newly-developed models; and (4) compare models' predictive ability with equations currently used to support national greenhouse gas (GHG) inventories. A total of 42 studies including 1327 individual dairy cattle records were collated. After removing outliers, the final database retained 34 studies and 610 animal records. Production and yield of CH4 were predicted by fitting mixed-effects models with a random effect of study. Evaluation of developed models and fourteen extant equations was assessed on all-data, confined, and grazing cows subsets. Feed intake was the most important predictor of CH4 production. Our best-developed CH4 production models outperformed Tier 2 equations from the Intergovernmental Panel on Climate Change (IPCC) in the all-data and grazing subsets, whereas they had similar performance for confined animals. Developed CH4 production models that include milk yield can be accurate and useful when feed intake is missing. Some extant equations had similar predictive performance to our best-developed models and can be an option for predicting CH4 production from LAC dairy cows. Extant equations were not accurate in predicting CH4 yield. The use of the newly-developed models rather than extant equations based on energy conversion factors, as applied by the IPCC, can substantially improve the accuracy of GHG inventories in LAC countries. [Display omitted] •Dry matter intake (DMI) was the most important predictor of dairy CH4 production.•Simple regression models including DMI were accurate for predicting CH4 production.•CH4 production can also be predicted using milk yield when DMI is missing.•Developed models outperformed IPCC Tier 2 equations.•These newly-developed models can improve the accuracy GHG inventories from LAC countries.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>35202679</pmid><doi>10.1016/j.scitotenv.2022.153982</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0048-9697
ispartof The Science of the total environment, 2022-06, Vol.825, p.153982-153982, Article 153982
issn 0048-9697
1879-1026
language eng
recordid cdi_proquest_miscellaneous_2661002658
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Animals
Caribbean
Cattle
dairy cattle
Diet
Diet - veterinary
dry matter intake
Eating
Empirical modeling
energy conversion
Enteric methane
environment
Female
GHG inventory
greenhouse gases
Lactation
Latin America
Linear models
Methane - analysis
methane production
Milk - chemistry
milk yield
prediction
Prediction equations
United Nations Framework Convention on Climate Change
title Prediction of enteric methane production and yield in dairy cattle using a Latin America and Caribbean database
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20enteric%20methane%20production%20and%20yield%20in%20dairy%20cattle%20using%20a%20Latin%20America%20and%20Caribbean%20database&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Congio,%20Guilhermo%20F.S.&rft.date=2022-06-15&rft.volume=825&rft.spage=153982&rft.epage=153982&rft.pages=153982-153982&rft.artnum=153982&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2022.153982&rft_dat=%3Cproquest_cross%3E2633847241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633847241&rft_id=info:pmid/35202679&rft_els_id=S0048969722010749&rfr_iscdi=true