Regular algebraic curve segments (III)—applications in interactive design and data fitting

In this paper (part three of the trilogy) we use low degree G 1 and G 2 continuous regular algebraic spline curves defined within parallelograms, to interpolate an ordered set of data points in the plane. We explicitly characterize curve families whose members have the required interpolating propert...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer aided geometric design 2001-04, Vol.18 (3), p.149-173
Hauptverfasser: Bajaj, Chandrajit L., Xu, Guoliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 173
container_issue 3
container_start_page 149
container_title Computer aided geometric design
container_volume 18
creator Bajaj, Chandrajit L.
Xu, Guoliang
description In this paper (part three of the trilogy) we use low degree G 1 and G 2 continuous regular algebraic spline curves defined within parallelograms, to interpolate an ordered set of data points in the plane. We explicitly characterize curve families whose members have the required interpolating properties and possess a minimal number of inflection points. The regular algebraic spline curves considered here have many attractive features: They are easy to construct. There exist convenient geometric control handles to locally modify the shape of the curve. The error of the approximation is controllable. Since the spline curve is always inside the parallelogram, the error of the fit is bounded by the size of the parallelogram. The spline curve can be rapidly displayed, even though the algebraic curve segments are implicitly defined.
doi_str_mv 10.1016/S0167-8396(01)00010-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26605142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167839601000103</els_id><sourcerecordid>26605142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-464c3a12fa4a0ff99c40b2a1362ae3c6c0508564bd5e22b664169c0b32388e6c3</originalsourceid><addsrcrecordid>eNqFkMlKxEAQhhtRcFweQQgIMh6ivSRtchIZXAYGBJeb0FQqldCS6YzdHcGbD-ET-iRGR7wKRdXl-6uoj7EDwU8EF_r0fmxnaaFKPeXimHMueKo22EQUZ2UqlZKbbPKHbLOdEJ5HSIpST9jTHbVDBz6BrqXKg8UEB_9KSaB2SS6GZDqfz48_3z9gteosQrS9C4l1Y0XygNGOcE3Bti4BVyc1REgaG6N17R7baqALtP87d9nj1eXD7CZd3F7PZxeLFJXWMc10hgqEbCAD3jRliRmvJAilJZBCjTznRa6zqs5JykrrTOgSeaWkKgrSqHbZ0XrvyvcvA4VoljYgdR046odgpNY8F5kcwXwNou9D8NSYlbdL8G9GcPPt0vy4NN-iDBfmx6VRY-7w9wAEhK7x4NCGv3BZcF1kI3W-pmj89dWSNwEtOaTaesJo6t7-c-cLRCeIuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26605142</pqid></control><display><type>article</type><title>Regular algebraic curve segments (III)—applications in interactive design and data fitting</title><source>Elsevier ScienceDirect Journals</source><creator>Bajaj, Chandrajit L. ; Xu, Guoliang</creator><creatorcontrib>Bajaj, Chandrajit L. ; Xu, Guoliang</creatorcontrib><description>In this paper (part three of the trilogy) we use low degree G 1 and G 2 continuous regular algebraic spline curves defined within parallelograms, to interpolate an ordered set of data points in the plane. We explicitly characterize curve families whose members have the required interpolating properties and possess a minimal number of inflection points. The regular algebraic spline curves considered here have many attractive features: They are easy to construct. There exist convenient geometric control handles to locally modify the shape of the curve. The error of the approximation is controllable. Since the spline curve is always inside the parallelogram, the error of the fit is bounded by the size of the parallelogram. The spline curve can be rapidly displayed, even though the algebraic curve segments are implicitly defined.</description><identifier>ISSN: 0167-8396</identifier><identifier>EISSN: 1879-2332</identifier><identifier>DOI: 10.1016/S0167-8396(01)00010-3</identifier><identifier>CODEN: CAGDEX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algebraic curve ; Applied sciences ; Computer aided design ; Computer science; control theory; systems ; Exact sciences and technology ; Parallelogram ; Polygonal chain ; Software ; Tensor product</subject><ispartof>Computer aided geometric design, 2001-04, Vol.18 (3), p.149-173</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-464c3a12fa4a0ff99c40b2a1362ae3c6c0508564bd5e22b664169c0b32388e6c3</citedby><cites>FETCH-LOGICAL-c366t-464c3a12fa4a0ff99c40b2a1362ae3c6c0508564bd5e22b664169c0b32388e6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167839601000103$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=980684$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bajaj, Chandrajit L.</creatorcontrib><creatorcontrib>Xu, Guoliang</creatorcontrib><title>Regular algebraic curve segments (III)—applications in interactive design and data fitting</title><title>Computer aided geometric design</title><description>In this paper (part three of the trilogy) we use low degree G 1 and G 2 continuous regular algebraic spline curves defined within parallelograms, to interpolate an ordered set of data points in the plane. We explicitly characterize curve families whose members have the required interpolating properties and possess a minimal number of inflection points. The regular algebraic spline curves considered here have many attractive features: They are easy to construct. There exist convenient geometric control handles to locally modify the shape of the curve. The error of the approximation is controllable. Since the spline curve is always inside the parallelogram, the error of the fit is bounded by the size of the parallelogram. The spline curve can be rapidly displayed, even though the algebraic curve segments are implicitly defined.</description><subject>Algebraic curve</subject><subject>Applied sciences</subject><subject>Computer aided design</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Parallelogram</subject><subject>Polygonal chain</subject><subject>Software</subject><subject>Tensor product</subject><issn>0167-8396</issn><issn>1879-2332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkMlKxEAQhhtRcFweQQgIMh6ivSRtchIZXAYGBJeb0FQqldCS6YzdHcGbD-ET-iRGR7wKRdXl-6uoj7EDwU8EF_r0fmxnaaFKPeXimHMueKo22EQUZ2UqlZKbbPKHbLOdEJ5HSIpST9jTHbVDBz6BrqXKg8UEB_9KSaB2SS6GZDqfz48_3z9gteosQrS9C4l1Y0XygNGOcE3Bti4BVyc1REgaG6N17R7baqALtP87d9nj1eXD7CZd3F7PZxeLFJXWMc10hgqEbCAD3jRliRmvJAilJZBCjTznRa6zqs5JykrrTOgSeaWkKgrSqHbZ0XrvyvcvA4VoljYgdR046odgpNY8F5kcwXwNou9D8NSYlbdL8G9GcPPt0vy4NN-iDBfmx6VRY-7w9wAEhK7x4NCGv3BZcF1kI3W-pmj89dWSNwEtOaTaesJo6t7-c-cLRCeIuw</recordid><startdate>20010401</startdate><enddate>20010401</enddate><creator>Bajaj, Chandrajit L.</creator><creator>Xu, Guoliang</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20010401</creationdate><title>Regular algebraic curve segments (III)—applications in interactive design and data fitting</title><author>Bajaj, Chandrajit L. ; Xu, Guoliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-464c3a12fa4a0ff99c40b2a1362ae3c6c0508564bd5e22b664169c0b32388e6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algebraic curve</topic><topic>Applied sciences</topic><topic>Computer aided design</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Parallelogram</topic><topic>Polygonal chain</topic><topic>Software</topic><topic>Tensor product</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bajaj, Chandrajit L.</creatorcontrib><creatorcontrib>Xu, Guoliang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer aided geometric design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bajaj, Chandrajit L.</au><au>Xu, Guoliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regular algebraic curve segments (III)—applications in interactive design and data fitting</atitle><jtitle>Computer aided geometric design</jtitle><date>2001-04-01</date><risdate>2001</risdate><volume>18</volume><issue>3</issue><spage>149</spage><epage>173</epage><pages>149-173</pages><issn>0167-8396</issn><eissn>1879-2332</eissn><coden>CAGDEX</coden><abstract>In this paper (part three of the trilogy) we use low degree G 1 and G 2 continuous regular algebraic spline curves defined within parallelograms, to interpolate an ordered set of data points in the plane. We explicitly characterize curve families whose members have the required interpolating properties and possess a minimal number of inflection points. The regular algebraic spline curves considered here have many attractive features: They are easy to construct. There exist convenient geometric control handles to locally modify the shape of the curve. The error of the approximation is controllable. Since the spline curve is always inside the parallelogram, the error of the fit is bounded by the size of the parallelogram. The spline curve can be rapidly displayed, even though the algebraic curve segments are implicitly defined.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0167-8396(01)00010-3</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-8396
ispartof Computer aided geometric design, 2001-04, Vol.18 (3), p.149-173
issn 0167-8396
1879-2332
language eng
recordid cdi_proquest_miscellaneous_26605142
source Elsevier ScienceDirect Journals
subjects Algebraic curve
Applied sciences
Computer aided design
Computer science
control theory
systems
Exact sciences and technology
Parallelogram
Polygonal chain
Software
Tensor product
title Regular algebraic curve segments (III)—applications in interactive design and data fitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A42%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regular%20algebraic%20curve%20segments%20(III)%E2%80%94applications%20in%20interactive%20design%20and%20data%20fitting&rft.jtitle=Computer%20aided%20geometric%20design&rft.au=Bajaj,%20Chandrajit%20L.&rft.date=2001-04-01&rft.volume=18&rft.issue=3&rft.spage=149&rft.epage=173&rft.pages=149-173&rft.issn=0167-8396&rft.eissn=1879-2332&rft.coden=CAGDEX&rft_id=info:doi/10.1016/S0167-8396(01)00010-3&rft_dat=%3Cproquest_cross%3E26605142%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26605142&rft_id=info:pmid/&rft_els_id=S0167839601000103&rfr_iscdi=true