Comparing genome‐based estimates of relatedness for use in pedigree‐based conservation management

Researchers have long debated which estimator of relatedness best captures the degree of relationship between two individuals. In the genomics era, this debate continues, with relatedness estimates being sensitive to the methods used to generate markers, marker quality, and levels of diversity in sa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology resources 2022-10, Vol.22 (7), p.2546-2558
Hauptverfasser: Hauser, Samantha S., Galla, Stephanie J., Putnam, Andrea S., Steeves, Tammy E., Latch, Emily K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2558
container_issue 7
container_start_page 2546
container_title Molecular ecology resources
container_volume 22
creator Hauser, Samantha S.
Galla, Stephanie J.
Putnam, Andrea S.
Steeves, Tammy E.
Latch, Emily K.
description Researchers have long debated which estimator of relatedness best captures the degree of relationship between two individuals. In the genomics era, this debate continues, with relatedness estimates being sensitive to the methods used to generate markers, marker quality, and levels of diversity in sampled individuals. Here, we compare six commonly used genome‐based relatedness estimators (kinship genetic distance [KGD], Wang maximum likelihood [TrioML], Queller and Goodnight [Rxy], Kinship INference for Genome‐wide association studies [KING‐robust), and pairwise relatedness [RAB], allele‐sharing coancestry [AS]) across five species bred in captivity–including three birds and two mammals–with varying degrees of reliable pedigree data, using reduced‐representation and whole genome resequencing data. Genome‐based relatedness estimates varied widely across estimators, sequencing methods, and species, yet the most consistent results for known first order relationships were found using Rxy, RAB, and AS. However, AS was found to be less consistently correlated with known pedigree relatedness than either Rxy or RAB. Our combined results indicate there is not a single genome‐based estimator that is ideal across different species and data types. To determine the most appropriate genome‐based relatedness estimator for each new data set, we recommend assessing the relative: (1) correlation of candidate estimators with known relationships in the pedigree and (2) precision of candidate estimators with known first‐order relationships. These recommendations are broadly applicable to conservation breeding programmes, particularly where genome‐based estimates of relatedness can complement and complete poorly pedigreed populations. Given a growing interest in the application of wild pedigrees, our results are also applicable to in situ wildlife management.
doi_str_mv 10.1111/1755-0998.13630
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2660101896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660101896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4120-d19a9dac03823d8250a326e840f63decb38307f979494264eb5c6098aa2a85f3</originalsourceid><addsrcrecordid>eNqFkb9OwzAQhy0EoqUwsyFLLCyl5zhO7BFV5Y9UYOnAZrnJpQpK7GI3IDYegWfkSXApFIkFLz5Z333y_Y6QYwbnLJ4Ry4UYglLynPGMww7pb192t7V86JGDEB4BMlB5uk96XAgGuYI-wbFrl8bXdkEXaF2LH2_vcxOwpBhWdWtWGKirqMcmlqXFEGjlPO0C0trSJZb1wuNvU-FsQP9sVrWztDXWLLBFuzoke5VpAh593wMyu5zMxtfD6f3VzfhiOixSlsCwZMqo0hTAZcJLmQgwPMlQplBlvMRiziWHvFK5SlWaZCnORRFHksYkRoqKD8jZRrv07qmLA-i2DgU2jbHouqCTLAMGTKosoqd_0EfXeRs_p5M8KlOmBERqtKEK70LwWOmlj6H4V81Arxeg1xHrddz6awGx4-Tb281bLLf8T-IREBvgpW7w9T-fvp3cbcSfnaKRrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709841950</pqid></control><display><type>article</type><title>Comparing genome‐based estimates of relatedness for use in pedigree‐based conservation management</title><source>Wiley Online Library All Journals</source><creator>Hauser, Samantha S. ; Galla, Stephanie J. ; Putnam, Andrea S. ; Steeves, Tammy E. ; Latch, Emily K.</creator><creatorcontrib>Hauser, Samantha S. ; Galla, Stephanie J. ; Putnam, Andrea S. ; Steeves, Tammy E. ; Latch, Emily K.</creatorcontrib><description>Researchers have long debated which estimator of relatedness best captures the degree of relationship between two individuals. In the genomics era, this debate continues, with relatedness estimates being sensitive to the methods used to generate markers, marker quality, and levels of diversity in sampled individuals. Here, we compare six commonly used genome‐based relatedness estimators (kinship genetic distance [KGD], Wang maximum likelihood [TrioML], Queller and Goodnight [Rxy], Kinship INference for Genome‐wide association studies [KING‐robust), and pairwise relatedness [RAB], allele‐sharing coancestry [AS]) across five species bred in captivity–including three birds and two mammals–with varying degrees of reliable pedigree data, using reduced‐representation and whole genome resequencing data. Genome‐based relatedness estimates varied widely across estimators, sequencing methods, and species, yet the most consistent results for known first order relationships were found using Rxy, RAB, and AS. However, AS was found to be less consistently correlated with known pedigree relatedness than either Rxy or RAB. Our combined results indicate there is not a single genome‐based estimator that is ideal across different species and data types. To determine the most appropriate genome‐based relatedness estimator for each new data set, we recommend assessing the relative: (1) correlation of candidate estimators with known relationships in the pedigree and (2) precision of candidate estimators with known first‐order relationships. These recommendations are broadly applicable to conservation breeding programmes, particularly where genome‐based estimates of relatedness can complement and complete poorly pedigreed populations. Given a growing interest in the application of wild pedigrees, our results are also applicable to in situ wildlife management.</description><identifier>ISSN: 1755-098X</identifier><identifier>EISSN: 1755-0998</identifier><identifier>DOI: 10.1111/1755-0998.13630</identifier><identifier>PMID: 35510790</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>allele‐sharing ; Breeding ; captive breeding ; Captivity ; Conservation ; conservation breeding programme ; Estimates ; Estimators ; ex situ management ; Genetic distance ; Genomes ; Markers ; Pedigree ; relatedness ; Species ; wild pedigrees ; Wildlife management</subject><ispartof>Molecular ecology resources, 2022-10, Vol.22 (7), p.2546-2558</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2022 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4120-d19a9dac03823d8250a326e840f63decb38307f979494264eb5c6098aa2a85f3</citedby><cites>FETCH-LOGICAL-c4120-d19a9dac03823d8250a326e840f63decb38307f979494264eb5c6098aa2a85f3</cites><orcidid>0000-0003-1795-6589 ; 0000-0002-3404-5253 ; 0000-0002-9892-1056 ; 0000-0002-4650-8067 ; 0000-0003-2112-5761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1755-0998.13630$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1755-0998.13630$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35510790$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hauser, Samantha S.</creatorcontrib><creatorcontrib>Galla, Stephanie J.</creatorcontrib><creatorcontrib>Putnam, Andrea S.</creatorcontrib><creatorcontrib>Steeves, Tammy E.</creatorcontrib><creatorcontrib>Latch, Emily K.</creatorcontrib><title>Comparing genome‐based estimates of relatedness for use in pedigree‐based conservation management</title><title>Molecular ecology resources</title><addtitle>Mol Ecol Resour</addtitle><description>Researchers have long debated which estimator of relatedness best captures the degree of relationship between two individuals. In the genomics era, this debate continues, with relatedness estimates being sensitive to the methods used to generate markers, marker quality, and levels of diversity in sampled individuals. Here, we compare six commonly used genome‐based relatedness estimators (kinship genetic distance [KGD], Wang maximum likelihood [TrioML], Queller and Goodnight [Rxy], Kinship INference for Genome‐wide association studies [KING‐robust), and pairwise relatedness [RAB], allele‐sharing coancestry [AS]) across five species bred in captivity–including three birds and two mammals–with varying degrees of reliable pedigree data, using reduced‐representation and whole genome resequencing data. Genome‐based relatedness estimates varied widely across estimators, sequencing methods, and species, yet the most consistent results for known first order relationships were found using Rxy, RAB, and AS. However, AS was found to be less consistently correlated with known pedigree relatedness than either Rxy or RAB. Our combined results indicate there is not a single genome‐based estimator that is ideal across different species and data types. To determine the most appropriate genome‐based relatedness estimator for each new data set, we recommend assessing the relative: (1) correlation of candidate estimators with known relationships in the pedigree and (2) precision of candidate estimators with known first‐order relationships. These recommendations are broadly applicable to conservation breeding programmes, particularly where genome‐based estimates of relatedness can complement and complete poorly pedigreed populations. Given a growing interest in the application of wild pedigrees, our results are also applicable to in situ wildlife management.</description><subject>allele‐sharing</subject><subject>Breeding</subject><subject>captive breeding</subject><subject>Captivity</subject><subject>Conservation</subject><subject>conservation breeding programme</subject><subject>Estimates</subject><subject>Estimators</subject><subject>ex situ management</subject><subject>Genetic distance</subject><subject>Genomes</subject><subject>Markers</subject><subject>Pedigree</subject><subject>relatedness</subject><subject>Species</subject><subject>wild pedigrees</subject><subject>Wildlife management</subject><issn>1755-098X</issn><issn>1755-0998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkb9OwzAQhy0EoqUwsyFLLCyl5zhO7BFV5Y9UYOnAZrnJpQpK7GI3IDYegWfkSXApFIkFLz5Z333y_Y6QYwbnLJ4Ry4UYglLynPGMww7pb192t7V86JGDEB4BMlB5uk96XAgGuYI-wbFrl8bXdkEXaF2LH2_vcxOwpBhWdWtWGKirqMcmlqXFEGjlPO0C0trSJZb1wuNvU-FsQP9sVrWztDXWLLBFuzoke5VpAh593wMyu5zMxtfD6f3VzfhiOixSlsCwZMqo0hTAZcJLmQgwPMlQplBlvMRiziWHvFK5SlWaZCnORRFHksYkRoqKD8jZRrv07qmLA-i2DgU2jbHouqCTLAMGTKosoqd_0EfXeRs_p5M8KlOmBERqtKEK70LwWOmlj6H4V81Arxeg1xHrddz6awGx4-Tb281bLLf8T-IREBvgpW7w9T-fvp3cbcSfnaKRrg</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Hauser, Samantha S.</creator><creator>Galla, Stephanie J.</creator><creator>Putnam, Andrea S.</creator><creator>Steeves, Tammy E.</creator><creator>Latch, Emily K.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1795-6589</orcidid><orcidid>https://orcid.org/0000-0002-3404-5253</orcidid><orcidid>https://orcid.org/0000-0002-9892-1056</orcidid><orcidid>https://orcid.org/0000-0002-4650-8067</orcidid><orcidid>https://orcid.org/0000-0003-2112-5761</orcidid></search><sort><creationdate>202210</creationdate><title>Comparing genome‐based estimates of relatedness for use in pedigree‐based conservation management</title><author>Hauser, Samantha S. ; Galla, Stephanie J. ; Putnam, Andrea S. ; Steeves, Tammy E. ; Latch, Emily K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4120-d19a9dac03823d8250a326e840f63decb38307f979494264eb5c6098aa2a85f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>allele‐sharing</topic><topic>Breeding</topic><topic>captive breeding</topic><topic>Captivity</topic><topic>Conservation</topic><topic>conservation breeding programme</topic><topic>Estimates</topic><topic>Estimators</topic><topic>ex situ management</topic><topic>Genetic distance</topic><topic>Genomes</topic><topic>Markers</topic><topic>Pedigree</topic><topic>relatedness</topic><topic>Species</topic><topic>wild pedigrees</topic><topic>Wildlife management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hauser, Samantha S.</creatorcontrib><creatorcontrib>Galla, Stephanie J.</creatorcontrib><creatorcontrib>Putnam, Andrea S.</creatorcontrib><creatorcontrib>Steeves, Tammy E.</creatorcontrib><creatorcontrib>Latch, Emily K.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hauser, Samantha S.</au><au>Galla, Stephanie J.</au><au>Putnam, Andrea S.</au><au>Steeves, Tammy E.</au><au>Latch, Emily K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing genome‐based estimates of relatedness for use in pedigree‐based conservation management</atitle><jtitle>Molecular ecology resources</jtitle><addtitle>Mol Ecol Resour</addtitle><date>2022-10</date><risdate>2022</risdate><volume>22</volume><issue>7</issue><spage>2546</spage><epage>2558</epage><pages>2546-2558</pages><issn>1755-098X</issn><eissn>1755-0998</eissn><abstract>Researchers have long debated which estimator of relatedness best captures the degree of relationship between two individuals. In the genomics era, this debate continues, with relatedness estimates being sensitive to the methods used to generate markers, marker quality, and levels of diversity in sampled individuals. Here, we compare six commonly used genome‐based relatedness estimators (kinship genetic distance [KGD], Wang maximum likelihood [TrioML], Queller and Goodnight [Rxy], Kinship INference for Genome‐wide association studies [KING‐robust), and pairwise relatedness [RAB], allele‐sharing coancestry [AS]) across five species bred in captivity–including three birds and two mammals–with varying degrees of reliable pedigree data, using reduced‐representation and whole genome resequencing data. Genome‐based relatedness estimates varied widely across estimators, sequencing methods, and species, yet the most consistent results for known first order relationships were found using Rxy, RAB, and AS. However, AS was found to be less consistently correlated with known pedigree relatedness than either Rxy or RAB. Our combined results indicate there is not a single genome‐based estimator that is ideal across different species and data types. To determine the most appropriate genome‐based relatedness estimator for each new data set, we recommend assessing the relative: (1) correlation of candidate estimators with known relationships in the pedigree and (2) precision of candidate estimators with known first‐order relationships. These recommendations are broadly applicable to conservation breeding programmes, particularly where genome‐based estimates of relatedness can complement and complete poorly pedigreed populations. Given a growing interest in the application of wild pedigrees, our results are also applicable to in situ wildlife management.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35510790</pmid><doi>10.1111/1755-0998.13630</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1795-6589</orcidid><orcidid>https://orcid.org/0000-0002-3404-5253</orcidid><orcidid>https://orcid.org/0000-0002-9892-1056</orcidid><orcidid>https://orcid.org/0000-0002-4650-8067</orcidid><orcidid>https://orcid.org/0000-0003-2112-5761</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-098X
ispartof Molecular ecology resources, 2022-10, Vol.22 (7), p.2546-2558
issn 1755-098X
1755-0998
language eng
recordid cdi_proquest_miscellaneous_2660101896
source Wiley Online Library All Journals
subjects allele‐sharing
Breeding
captive breeding
Captivity
Conservation
conservation breeding programme
Estimates
Estimators
ex situ management
Genetic distance
Genomes
Markers
Pedigree
relatedness
Species
wild pedigrees
Wildlife management
title Comparing genome‐based estimates of relatedness for use in pedigree‐based conservation management
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T11%3A18%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20genome%E2%80%90based%20estimates%20of%20relatedness%20for%20use%20in%20pedigree%E2%80%90based%20conservation%20management&rft.jtitle=Molecular%20ecology%20resources&rft.au=Hauser,%20Samantha%20S.&rft.date=2022-10&rft.volume=22&rft.issue=7&rft.spage=2546&rft.epage=2558&rft.pages=2546-2558&rft.issn=1755-098X&rft.eissn=1755-0998&rft_id=info:doi/10.1111/1755-0998.13630&rft_dat=%3Cproquest_cross%3E2660101896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709841950&rft_id=info:pmid/35510790&rfr_iscdi=true