One-dimensional Luttinger liquids in a two-dimensional moiré lattice
The Luttinger liquid (LL) model of one-dimensional (1D) electronic systems provides a powerful tool for understanding strongly correlated physics, including phenomena such as spin–charge separation 1 . Substantial theoretical efforts have attempted to extend the LL phenomenology to two dimensions, e...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2022-05, Vol.605 (7908), p.57-62 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 62 |
---|---|
container_issue | 7908 |
container_start_page | 57 |
container_title | Nature (London) |
container_volume | 605 |
creator | Wang, Pengjie Yu, Guo Kwan, Yves H. Jia, Yanyu Lei, Shiming Klemenz, Sebastian Cevallos, F. Alexandre Singha, Ratnadwip Devakul, Trithep Watanabe, Kenji Taniguchi, Takashi Sondhi, Shivaji L. Cava, Robert J. Schoop, Leslie M. Parameswaran, Siddharth A. Wu, Sanfeng |
description | The Luttinger liquid (LL) model of one-dimensional (1D) electronic systems provides a powerful tool for understanding strongly correlated physics, including phenomena such as spin–charge separation
1
. Substantial theoretical efforts have attempted to extend the LL phenomenology to two dimensions, especially in models of closely packed arrays of 1D quantum wires
2
–
13
, each being described as a LL. Such coupled-wire models have been successfully used to construct two-dimensional (2D) anisotropic non-Fermi liquids
2
–
6
, quantum Hall states
7
–
9
, topological phases
10
,
11
and quantum spin liquids
12
,
13
. However, an experimental demonstration of high-quality arrays of 1D LLs suitable for realizing these models remains absent. Here we report the experimental realization of 2D arrays of 1D LLs with crystalline quality in a moiré superlattice made of twisted bilayer tungsten ditelluride (tWTe
2
). Originating from the anisotropic lattice of the monolayer, the moiré pattern of tWTe
2
hosts identical, parallel 1D electronic channels, separated by a fixed nanoscale distance, which is tuneable by the interlayer twist angle. At a twist angle of approximately 5 degrees, we find that hole-doped tWTe
2
exhibits exceptionally large transport anisotropy with a resistance ratio of around 1,000 between two orthogonal in-plane directions. The across-wire conductance exhibits power-law scaling behaviours, consistent with the formation of a 2D anisotropic phase that resembles an array of LLs. Our results open the door for realizing a variety of correlated and topological quantum phases based on coupled-wire models and LL physics.
A tuneable platform using twisted WTe
2
stacks is described in which an electronic phase in the two-dimensional moiré lattice array is shown to resemble one-dimensional Luttinger liquids. |
doi_str_mv | 10.1038/s41586-022-04514-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2660100912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660100912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-eec6d726664edcfce07383e75c6d1b498d4f3c077e8ce945344f55c925e0a10f3</originalsourceid><addsrcrecordid>eNp9kMlKxEAQhhtRdFxewIMEvHhprU6vOYqMCwx40XOT6VSkJYt2J4iP5HP4YvaYUdGDp4Kqr_4qPkIOGZwy4OYsCiaNopDnFIRkgqoNMmNCKyqU0ZtkBpAbCoarHbIb4yMASKbFNtnhUoLRupiR-W2HtPItdtH3Xdlki3EYfPeAIWv88-irmPkuK7Phpf-Ftb0P729ZUyba4T7Zqssm4sG67pH7y_ndxTVd3F7dXJwvqONaDhTRqUrnSimBlasdguaGo5apzZaiMJWouQOt0TgshORC1FK6IpcIJYOa75GTKfcp9M8jxsG2PjpsmrLDfow2RQMDKFie0OM_6GM_hvT6J8VkwXMuEpVPlAt9jAFr-xR8W4ZXy8CuJNtJsk2S7adkq9LS0Tp6XLZYfa98WU0An4CYRiuXP7f_if0AsS6HZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661593234</pqid></control><display><type>article</type><title>One-dimensional Luttinger liquids in a two-dimensional moiré lattice</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Pengjie ; Yu, Guo ; Kwan, Yves H. ; Jia, Yanyu ; Lei, Shiming ; Klemenz, Sebastian ; Cevallos, F. Alexandre ; Singha, Ratnadwip ; Devakul, Trithep ; Watanabe, Kenji ; Taniguchi, Takashi ; Sondhi, Shivaji L. ; Cava, Robert J. ; Schoop, Leslie M. ; Parameswaran, Siddharth A. ; Wu, Sanfeng</creator><creatorcontrib>Wang, Pengjie ; Yu, Guo ; Kwan, Yves H. ; Jia, Yanyu ; Lei, Shiming ; Klemenz, Sebastian ; Cevallos, F. Alexandre ; Singha, Ratnadwip ; Devakul, Trithep ; Watanabe, Kenji ; Taniguchi, Takashi ; Sondhi, Shivaji L. ; Cava, Robert J. ; Schoop, Leslie M. ; Parameswaran, Siddharth A. ; Wu, Sanfeng</creatorcontrib><description>The Luttinger liquid (LL) model of one-dimensional (1D) electronic systems provides a powerful tool for understanding strongly correlated physics, including phenomena such as spin–charge separation
1
. Substantial theoretical efforts have attempted to extend the LL phenomenology to two dimensions, especially in models of closely packed arrays of 1D quantum wires
2
–
13
, each being described as a LL. Such coupled-wire models have been successfully used to construct two-dimensional (2D) anisotropic non-Fermi liquids
2
–
6
, quantum Hall states
7
–
9
, topological phases
10
,
11
and quantum spin liquids
12
,
13
. However, an experimental demonstration of high-quality arrays of 1D LLs suitable for realizing these models remains absent. Here we report the experimental realization of 2D arrays of 1D LLs with crystalline quality in a moiré superlattice made of twisted bilayer tungsten ditelluride (tWTe
2
). Originating from the anisotropic lattice of the monolayer, the moiré pattern of tWTe
2
hosts identical, parallel 1D electronic channels, separated by a fixed nanoscale distance, which is tuneable by the interlayer twist angle. At a twist angle of approximately 5 degrees, we find that hole-doped tWTe
2
exhibits exceptionally large transport anisotropy with a resistance ratio of around 1,000 between two orthogonal in-plane directions. The across-wire conductance exhibits power-law scaling behaviours, consistent with the formation of a 2D anisotropic phase that resembles an array of LLs. Our results open the door for realizing a variety of correlated and topological quantum phases based on coupled-wire models and LL physics.
A tuneable platform using twisted WTe
2
stacks is described in which an electronic phase in the two-dimensional moiré lattice array is shown to resemble one-dimensional Luttinger liquids.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-022-04514-6</identifier><identifier>PMID: 35508779</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301 ; 639/766/119 ; 639/925 ; Anisotropy ; Arrays ; Bias ; Bilayers ; Electronic systems ; Humanities and Social Sciences ; Interlayers ; Modelling ; Moire patterns ; multidisciplinary ; Phenomenology ; Physics ; Power ; Science ; Science (multidisciplinary) ; Superlattices ; Topology ; Tungsten ; Wire</subject><ispartof>Nature (London), 2022-05, Vol.605 (7908), p.57-62</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group May 5, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-eec6d726664edcfce07383e75c6d1b498d4f3c077e8ce945344f55c925e0a10f3</citedby><cites>FETCH-LOGICAL-c375t-eec6d726664edcfce07383e75c6d1b498d4f3c077e8ce945344f55c925e0a10f3</cites><orcidid>0000-0002-6227-6286 ; 0000-0001-6061-8441 ; 0000-0003-1812-9825 ; 0000-0002-3155-2137 ; 0000-0002-1467-3105 ; 0000-0002-4129-897X ; 0000-0003-3459-4241 ; 0000-0002-1427-6599 ; 0000-0003-3701-8119 ; 0000-0002-5055-5528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-022-04514-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-022-04514-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35508779$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Pengjie</creatorcontrib><creatorcontrib>Yu, Guo</creatorcontrib><creatorcontrib>Kwan, Yves H.</creatorcontrib><creatorcontrib>Jia, Yanyu</creatorcontrib><creatorcontrib>Lei, Shiming</creatorcontrib><creatorcontrib>Klemenz, Sebastian</creatorcontrib><creatorcontrib>Cevallos, F. Alexandre</creatorcontrib><creatorcontrib>Singha, Ratnadwip</creatorcontrib><creatorcontrib>Devakul, Trithep</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Sondhi, Shivaji L.</creatorcontrib><creatorcontrib>Cava, Robert J.</creatorcontrib><creatorcontrib>Schoop, Leslie M.</creatorcontrib><creatorcontrib>Parameswaran, Siddharth A.</creatorcontrib><creatorcontrib>Wu, Sanfeng</creatorcontrib><title>One-dimensional Luttinger liquids in a two-dimensional moiré lattice</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The Luttinger liquid (LL) model of one-dimensional (1D) electronic systems provides a powerful tool for understanding strongly correlated physics, including phenomena such as spin–charge separation
1
. Substantial theoretical efforts have attempted to extend the LL phenomenology to two dimensions, especially in models of closely packed arrays of 1D quantum wires
2
–
13
, each being described as a LL. Such coupled-wire models have been successfully used to construct two-dimensional (2D) anisotropic non-Fermi liquids
2
–
6
, quantum Hall states
7
–
9
, topological phases
10
,
11
and quantum spin liquids
12
,
13
. However, an experimental demonstration of high-quality arrays of 1D LLs suitable for realizing these models remains absent. Here we report the experimental realization of 2D arrays of 1D LLs with crystalline quality in a moiré superlattice made of twisted bilayer tungsten ditelluride (tWTe
2
). Originating from the anisotropic lattice of the monolayer, the moiré pattern of tWTe
2
hosts identical, parallel 1D electronic channels, separated by a fixed nanoscale distance, which is tuneable by the interlayer twist angle. At a twist angle of approximately 5 degrees, we find that hole-doped tWTe
2
exhibits exceptionally large transport anisotropy with a resistance ratio of around 1,000 between two orthogonal in-plane directions. The across-wire conductance exhibits power-law scaling behaviours, consistent with the formation of a 2D anisotropic phase that resembles an array of LLs. Our results open the door for realizing a variety of correlated and topological quantum phases based on coupled-wire models and LL physics.
A tuneable platform using twisted WTe
2
stacks is described in which an electronic phase in the two-dimensional moiré lattice array is shown to resemble one-dimensional Luttinger liquids.</description><subject>639/301</subject><subject>639/766/119</subject><subject>639/925</subject><subject>Anisotropy</subject><subject>Arrays</subject><subject>Bias</subject><subject>Bilayers</subject><subject>Electronic systems</subject><subject>Humanities and Social Sciences</subject><subject>Interlayers</subject><subject>Modelling</subject><subject>Moire patterns</subject><subject>multidisciplinary</subject><subject>Phenomenology</subject><subject>Physics</subject><subject>Power</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Superlattices</subject><subject>Topology</subject><subject>Tungsten</subject><subject>Wire</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMlKxEAQhhtRdFxewIMEvHhprU6vOYqMCwx40XOT6VSkJYt2J4iP5HP4YvaYUdGDp4Kqr_4qPkIOGZwy4OYsCiaNopDnFIRkgqoNMmNCKyqU0ZtkBpAbCoarHbIb4yMASKbFNtnhUoLRupiR-W2HtPItdtH3Xdlki3EYfPeAIWv88-irmPkuK7Phpf-Ftb0P729ZUyba4T7Zqssm4sG67pH7y_ndxTVd3F7dXJwvqONaDhTRqUrnSimBlasdguaGo5apzZaiMJWouQOt0TgshORC1FK6IpcIJYOa75GTKfcp9M8jxsG2PjpsmrLDfow2RQMDKFie0OM_6GM_hvT6J8VkwXMuEpVPlAt9jAFr-xR8W4ZXy8CuJNtJsk2S7adkq9LS0Tp6XLZYfa98WU0An4CYRiuXP7f_if0AsS6HZQ</recordid><startdate>20220505</startdate><enddate>20220505</enddate><creator>Wang, Pengjie</creator><creator>Yu, Guo</creator><creator>Kwan, Yves H.</creator><creator>Jia, Yanyu</creator><creator>Lei, Shiming</creator><creator>Klemenz, Sebastian</creator><creator>Cevallos, F. Alexandre</creator><creator>Singha, Ratnadwip</creator><creator>Devakul, Trithep</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Sondhi, Shivaji L.</creator><creator>Cava, Robert J.</creator><creator>Schoop, Leslie M.</creator><creator>Parameswaran, Siddharth A.</creator><creator>Wu, Sanfeng</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6227-6286</orcidid><orcidid>https://orcid.org/0000-0001-6061-8441</orcidid><orcidid>https://orcid.org/0000-0003-1812-9825</orcidid><orcidid>https://orcid.org/0000-0002-3155-2137</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-4129-897X</orcidid><orcidid>https://orcid.org/0000-0003-3459-4241</orcidid><orcidid>https://orcid.org/0000-0002-1427-6599</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-5055-5528</orcidid></search><sort><creationdate>20220505</creationdate><title>One-dimensional Luttinger liquids in a two-dimensional moiré lattice</title><author>Wang, Pengjie ; Yu, Guo ; Kwan, Yves H. ; Jia, Yanyu ; Lei, Shiming ; Klemenz, Sebastian ; Cevallos, F. Alexandre ; Singha, Ratnadwip ; Devakul, Trithep ; Watanabe, Kenji ; Taniguchi, Takashi ; Sondhi, Shivaji L. ; Cava, Robert J. ; Schoop, Leslie M. ; Parameswaran, Siddharth A. ; Wu, Sanfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-eec6d726664edcfce07383e75c6d1b498d4f3c077e8ce945344f55c925e0a10f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/301</topic><topic>639/766/119</topic><topic>639/925</topic><topic>Anisotropy</topic><topic>Arrays</topic><topic>Bias</topic><topic>Bilayers</topic><topic>Electronic systems</topic><topic>Humanities and Social Sciences</topic><topic>Interlayers</topic><topic>Modelling</topic><topic>Moire patterns</topic><topic>multidisciplinary</topic><topic>Phenomenology</topic><topic>Physics</topic><topic>Power</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Superlattices</topic><topic>Topology</topic><topic>Tungsten</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Pengjie</creatorcontrib><creatorcontrib>Yu, Guo</creatorcontrib><creatorcontrib>Kwan, Yves H.</creatorcontrib><creatorcontrib>Jia, Yanyu</creatorcontrib><creatorcontrib>Lei, Shiming</creatorcontrib><creatorcontrib>Klemenz, Sebastian</creatorcontrib><creatorcontrib>Cevallos, F. Alexandre</creatorcontrib><creatorcontrib>Singha, Ratnadwip</creatorcontrib><creatorcontrib>Devakul, Trithep</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Sondhi, Shivaji L.</creatorcontrib><creatorcontrib>Cava, Robert J.</creatorcontrib><creatorcontrib>Schoop, Leslie M.</creatorcontrib><creatorcontrib>Parameswaran, Siddharth A.</creatorcontrib><creatorcontrib>Wu, Sanfeng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Pengjie</au><au>Yu, Guo</au><au>Kwan, Yves H.</au><au>Jia, Yanyu</au><au>Lei, Shiming</au><au>Klemenz, Sebastian</au><au>Cevallos, F. Alexandre</au><au>Singha, Ratnadwip</au><au>Devakul, Trithep</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Sondhi, Shivaji L.</au><au>Cava, Robert J.</au><au>Schoop, Leslie M.</au><au>Parameswaran, Siddharth A.</au><au>Wu, Sanfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-dimensional Luttinger liquids in a two-dimensional moiré lattice</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2022-05-05</date><risdate>2022</risdate><volume>605</volume><issue>7908</issue><spage>57</spage><epage>62</epage><pages>57-62</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The Luttinger liquid (LL) model of one-dimensional (1D) electronic systems provides a powerful tool for understanding strongly correlated physics, including phenomena such as spin–charge separation
1
. Substantial theoretical efforts have attempted to extend the LL phenomenology to two dimensions, especially in models of closely packed arrays of 1D quantum wires
2
–
13
, each being described as a LL. Such coupled-wire models have been successfully used to construct two-dimensional (2D) anisotropic non-Fermi liquids
2
–
6
, quantum Hall states
7
–
9
, topological phases
10
,
11
and quantum spin liquids
12
,
13
. However, an experimental demonstration of high-quality arrays of 1D LLs suitable for realizing these models remains absent. Here we report the experimental realization of 2D arrays of 1D LLs with crystalline quality in a moiré superlattice made of twisted bilayer tungsten ditelluride (tWTe
2
). Originating from the anisotropic lattice of the monolayer, the moiré pattern of tWTe
2
hosts identical, parallel 1D electronic channels, separated by a fixed nanoscale distance, which is tuneable by the interlayer twist angle. At a twist angle of approximately 5 degrees, we find that hole-doped tWTe
2
exhibits exceptionally large transport anisotropy with a resistance ratio of around 1,000 between two orthogonal in-plane directions. The across-wire conductance exhibits power-law scaling behaviours, consistent with the formation of a 2D anisotropic phase that resembles an array of LLs. Our results open the door for realizing a variety of correlated and topological quantum phases based on coupled-wire models and LL physics.
A tuneable platform using twisted WTe
2
stacks is described in which an electronic phase in the two-dimensional moiré lattice array is shown to resemble one-dimensional Luttinger liquids.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35508779</pmid><doi>10.1038/s41586-022-04514-6</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6227-6286</orcidid><orcidid>https://orcid.org/0000-0001-6061-8441</orcidid><orcidid>https://orcid.org/0000-0003-1812-9825</orcidid><orcidid>https://orcid.org/0000-0002-3155-2137</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-4129-897X</orcidid><orcidid>https://orcid.org/0000-0003-3459-4241</orcidid><orcidid>https://orcid.org/0000-0002-1427-6599</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-5055-5528</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2022-05, Vol.605 (7908), p.57-62 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2660100912 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 639/301 639/766/119 639/925 Anisotropy Arrays Bias Bilayers Electronic systems Humanities and Social Sciences Interlayers Modelling Moire patterns multidisciplinary Phenomenology Physics Power Science Science (multidisciplinary) Superlattices Topology Tungsten Wire |
title | One-dimensional Luttinger liquids in a two-dimensional moiré lattice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A26%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-dimensional%20Luttinger%20liquids%20in%20a%20two-dimensional%20moir%C3%A9%20lattice&rft.jtitle=Nature%20(London)&rft.au=Wang,%20Pengjie&rft.date=2022-05-05&rft.volume=605&rft.issue=7908&rft.spage=57&rft.epage=62&rft.pages=57-62&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-022-04514-6&rft_dat=%3Cproquest_cross%3E2660100912%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2661593234&rft_id=info:pmid/35508779&rfr_iscdi=true |