Swarm of micro flying robots in the wild

Aerial robots are widely deployed, but highly cluttered environments such as dense forests remain inaccessible to drones and even more so to swarms of drones. In these scenarios, previously unknown surroundings and narrow corridors combined with requirements of swarm coordination can create challeng...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science robotics 2022-05, Vol.7 (66), p.eabm5954-eabm5954
Hauptverfasser: Zhou, Xin, Wen, Xiangyong, Wang, Zhepei, Gao, Yuman, Li, Haojia, Wang, Qianhao, Yang, Tiankai, Lu, Haojian, Cao, Yanjun, Xu, Chao, Gao, Fei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page eabm5954
container_issue 66
container_start_page eabm5954
container_title Science robotics
container_volume 7
creator Zhou, Xin
Wen, Xiangyong
Wang, Zhepei
Gao, Yuman
Li, Haojia
Wang, Qianhao
Yang, Tiankai
Lu, Haojian
Cao, Yanjun
Xu, Chao
Gao, Fei
description Aerial robots are widely deployed, but highly cluttered environments such as dense forests remain inaccessible to drones and even more so to swarms of drones. In these scenarios, previously unknown surroundings and narrow corridors combined with requirements of swarm coordination can create challenges. To enable swarm navigation in the wild, we develop miniature but fully autonomous drones with a trajectory planner that can function in a timely and accurate manner based on limited information from onboard sensors. The planning problem satisfies various task requirements including flight efficiency, obstacle avoidance, and inter-robot collision avoidance, dynamical feasibility, swarm coordination, and so on, thus realizing an extensible planner. Furthermore, the proposed planner deforms trajectory shapes and adjusts time allocation synchronously based on spatial-temporal joint optimization. A high-quality trajectory thus can be obtained after exhaustively exploiting the solution space within only a few milliseconds, even in the most constrained environment. The planner is finally integrated into the developed palm-sized swarm platform with onboard perception, localization, and control. Benchmark comparisons validate the superior performance of the planner in trajectory quality and computing time. Various real-world field experiments demonstrate the extensibility of our system. Our approach evolves aerial robotics in three aspects: capability of cluttered environment navigation, extensibility to diverse task requirements, and coordination as a swarm without external facilities.
doi_str_mv 10.1126/scirobotics.abm5954
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2660099619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660099619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-11ca15bc93bda18c92144dd96794bb6a5233ad97c71393599e3d4c1c7ad4ee4e3</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMottT-AkGy7GZqbp7NUopWoeBCXYe8RiMznZpMKf33Vlulq3MX55x7-BC6BjIFoPK2-JQ71_XJl6l1rdCCn6Eh5YpUmit5fnIP0LiUT0IIKMkkp5dowIQgSs7oEE1etja3uKtxm3zucN3s0uod_3YXnFa4_4h4m5pwhS5q25Q4PuoIvT3cv84fq-Xz4ml-t6w8E6SvALwF4bxmLliYeU2B8xC0VJo7J62gjNmglVfANBNaRxa4B69s4DHyyEZocuhd5-5rE0tv2lR8bBq7it2mGColIVpL0HsrO1j3w0vJsTbrnFqbdwaI-aFkTiiZI6V96ub4YOPaGP4zf0zYNxYiZeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660099619</pqid></control><display><type>article</type><title>Swarm of micro flying robots in the wild</title><source>Science Magazine</source><creator>Zhou, Xin ; Wen, Xiangyong ; Wang, Zhepei ; Gao, Yuman ; Li, Haojia ; Wang, Qianhao ; Yang, Tiankai ; Lu, Haojian ; Cao, Yanjun ; Xu, Chao ; Gao, Fei</creator><creatorcontrib>Zhou, Xin ; Wen, Xiangyong ; Wang, Zhepei ; Gao, Yuman ; Li, Haojia ; Wang, Qianhao ; Yang, Tiankai ; Lu, Haojian ; Cao, Yanjun ; Xu, Chao ; Gao, Fei</creatorcontrib><description>Aerial robots are widely deployed, but highly cluttered environments such as dense forests remain inaccessible to drones and even more so to swarms of drones. In these scenarios, previously unknown surroundings and narrow corridors combined with requirements of swarm coordination can create challenges. To enable swarm navigation in the wild, we develop miniature but fully autonomous drones with a trajectory planner that can function in a timely and accurate manner based on limited information from onboard sensors. The planning problem satisfies various task requirements including flight efficiency, obstacle avoidance, and inter-robot collision avoidance, dynamical feasibility, swarm coordination, and so on, thus realizing an extensible planner. Furthermore, the proposed planner deforms trajectory shapes and adjusts time allocation synchronously based on spatial-temporal joint optimization. A high-quality trajectory thus can be obtained after exhaustively exploiting the solution space within only a few milliseconds, even in the most constrained environment. The planner is finally integrated into the developed palm-sized swarm platform with onboard perception, localization, and control. Benchmark comparisons validate the superior performance of the planner in trajectory quality and computing time. Various real-world field experiments demonstrate the extensibility of our system. Our approach evolves aerial robotics in three aspects: capability of cluttered environment navigation, extensibility to diverse task requirements, and coordination as a swarm without external facilities.</description><identifier>ISSN: 2470-9476</identifier><identifier>EISSN: 2470-9476</identifier><identifier>DOI: 10.1126/scirobotics.abm5954</identifier><identifier>PMID: 35507682</identifier><language>eng</language><publisher>United States</publisher><ispartof>Science robotics, 2022-05, Vol.7 (66), p.eabm5954-eabm5954</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-11ca15bc93bda18c92144dd96794bb6a5233ad97c71393599e3d4c1c7ad4ee4e3</citedby><cites>FETCH-LOGICAL-c350t-11ca15bc93bda18c92144dd96794bb6a5233ad97c71393599e3d4c1c7ad4ee4e3</cites><orcidid>0000-0001-8203-085X ; 0000-0002-2759-6364 ; 0000-0001-5157-4205 ; 0000-0002-1393-3040 ; 0000-0002-4667-0419 ; 0000-0002-6513-374X ; 0000-0002-4409-9095 ; 0000-0001-7771-849X ; 0000-0001-5484-205X ; 0000-0002-2032-258X ; 0000-0002-0377-770X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35507682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Wen, Xiangyong</creatorcontrib><creatorcontrib>Wang, Zhepei</creatorcontrib><creatorcontrib>Gao, Yuman</creatorcontrib><creatorcontrib>Li, Haojia</creatorcontrib><creatorcontrib>Wang, Qianhao</creatorcontrib><creatorcontrib>Yang, Tiankai</creatorcontrib><creatorcontrib>Lu, Haojian</creatorcontrib><creatorcontrib>Cao, Yanjun</creatorcontrib><creatorcontrib>Xu, Chao</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><title>Swarm of micro flying robots in the wild</title><title>Science robotics</title><addtitle>Sci Robot</addtitle><description>Aerial robots are widely deployed, but highly cluttered environments such as dense forests remain inaccessible to drones and even more so to swarms of drones. In these scenarios, previously unknown surroundings and narrow corridors combined with requirements of swarm coordination can create challenges. To enable swarm navigation in the wild, we develop miniature but fully autonomous drones with a trajectory planner that can function in a timely and accurate manner based on limited information from onboard sensors. The planning problem satisfies various task requirements including flight efficiency, obstacle avoidance, and inter-robot collision avoidance, dynamical feasibility, swarm coordination, and so on, thus realizing an extensible planner. Furthermore, the proposed planner deforms trajectory shapes and adjusts time allocation synchronously based on spatial-temporal joint optimization. A high-quality trajectory thus can be obtained after exhaustively exploiting the solution space within only a few milliseconds, even in the most constrained environment. The planner is finally integrated into the developed palm-sized swarm platform with onboard perception, localization, and control. Benchmark comparisons validate the superior performance of the planner in trajectory quality and computing time. Various real-world field experiments demonstrate the extensibility of our system. Our approach evolves aerial robotics in three aspects: capability of cluttered environment navigation, extensibility to diverse task requirements, and coordination as a swarm without external facilities.</description><issn>2470-9476</issn><issn>2470-9476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEUhYMottT-AkGy7GZqbp7NUopWoeBCXYe8RiMznZpMKf33Vlulq3MX55x7-BC6BjIFoPK2-JQ71_XJl6l1rdCCn6Eh5YpUmit5fnIP0LiUT0IIKMkkp5dowIQgSs7oEE1etja3uKtxm3zucN3s0uod_3YXnFa4_4h4m5pwhS5q25Q4PuoIvT3cv84fq-Xz4ml-t6w8E6SvALwF4bxmLliYeU2B8xC0VJo7J62gjNmglVfANBNaRxa4B69s4DHyyEZocuhd5-5rE0tv2lR8bBq7it2mGColIVpL0HsrO1j3w0vJsTbrnFqbdwaI-aFkTiiZI6V96ub4YOPaGP4zf0zYNxYiZeA</recordid><startdate>20220504</startdate><enddate>20220504</enddate><creator>Zhou, Xin</creator><creator>Wen, Xiangyong</creator><creator>Wang, Zhepei</creator><creator>Gao, Yuman</creator><creator>Li, Haojia</creator><creator>Wang, Qianhao</creator><creator>Yang, Tiankai</creator><creator>Lu, Haojian</creator><creator>Cao, Yanjun</creator><creator>Xu, Chao</creator><creator>Gao, Fei</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8203-085X</orcidid><orcidid>https://orcid.org/0000-0002-2759-6364</orcidid><orcidid>https://orcid.org/0000-0001-5157-4205</orcidid><orcidid>https://orcid.org/0000-0002-1393-3040</orcidid><orcidid>https://orcid.org/0000-0002-4667-0419</orcidid><orcidid>https://orcid.org/0000-0002-6513-374X</orcidid><orcidid>https://orcid.org/0000-0002-4409-9095</orcidid><orcidid>https://orcid.org/0000-0001-7771-849X</orcidid><orcidid>https://orcid.org/0000-0001-5484-205X</orcidid><orcidid>https://orcid.org/0000-0002-2032-258X</orcidid><orcidid>https://orcid.org/0000-0002-0377-770X</orcidid></search><sort><creationdate>20220504</creationdate><title>Swarm of micro flying robots in the wild</title><author>Zhou, Xin ; Wen, Xiangyong ; Wang, Zhepei ; Gao, Yuman ; Li, Haojia ; Wang, Qianhao ; Yang, Tiankai ; Lu, Haojian ; Cao, Yanjun ; Xu, Chao ; Gao, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-11ca15bc93bda18c92144dd96794bb6a5233ad97c71393599e3d4c1c7ad4ee4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Wen, Xiangyong</creatorcontrib><creatorcontrib>Wang, Zhepei</creatorcontrib><creatorcontrib>Gao, Yuman</creatorcontrib><creatorcontrib>Li, Haojia</creatorcontrib><creatorcontrib>Wang, Qianhao</creatorcontrib><creatorcontrib>Yang, Tiankai</creatorcontrib><creatorcontrib>Lu, Haojian</creatorcontrib><creatorcontrib>Cao, Yanjun</creatorcontrib><creatorcontrib>Xu, Chao</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Science robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xin</au><au>Wen, Xiangyong</au><au>Wang, Zhepei</au><au>Gao, Yuman</au><au>Li, Haojia</au><au>Wang, Qianhao</au><au>Yang, Tiankai</au><au>Lu, Haojian</au><au>Cao, Yanjun</au><au>Xu, Chao</au><au>Gao, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Swarm of micro flying robots in the wild</atitle><jtitle>Science robotics</jtitle><addtitle>Sci Robot</addtitle><date>2022-05-04</date><risdate>2022</risdate><volume>7</volume><issue>66</issue><spage>eabm5954</spage><epage>eabm5954</epage><pages>eabm5954-eabm5954</pages><issn>2470-9476</issn><eissn>2470-9476</eissn><abstract>Aerial robots are widely deployed, but highly cluttered environments such as dense forests remain inaccessible to drones and even more so to swarms of drones. In these scenarios, previously unknown surroundings and narrow corridors combined with requirements of swarm coordination can create challenges. To enable swarm navigation in the wild, we develop miniature but fully autonomous drones with a trajectory planner that can function in a timely and accurate manner based on limited information from onboard sensors. The planning problem satisfies various task requirements including flight efficiency, obstacle avoidance, and inter-robot collision avoidance, dynamical feasibility, swarm coordination, and so on, thus realizing an extensible planner. Furthermore, the proposed planner deforms trajectory shapes and adjusts time allocation synchronously based on spatial-temporal joint optimization. A high-quality trajectory thus can be obtained after exhaustively exploiting the solution space within only a few milliseconds, even in the most constrained environment. The planner is finally integrated into the developed palm-sized swarm platform with onboard perception, localization, and control. Benchmark comparisons validate the superior performance of the planner in trajectory quality and computing time. Various real-world field experiments demonstrate the extensibility of our system. Our approach evolves aerial robotics in three aspects: capability of cluttered environment navigation, extensibility to diverse task requirements, and coordination as a swarm without external facilities.</abstract><cop>United States</cop><pmid>35507682</pmid><doi>10.1126/scirobotics.abm5954</doi><orcidid>https://orcid.org/0000-0001-8203-085X</orcidid><orcidid>https://orcid.org/0000-0002-2759-6364</orcidid><orcidid>https://orcid.org/0000-0001-5157-4205</orcidid><orcidid>https://orcid.org/0000-0002-1393-3040</orcidid><orcidid>https://orcid.org/0000-0002-4667-0419</orcidid><orcidid>https://orcid.org/0000-0002-6513-374X</orcidid><orcidid>https://orcid.org/0000-0002-4409-9095</orcidid><orcidid>https://orcid.org/0000-0001-7771-849X</orcidid><orcidid>https://orcid.org/0000-0001-5484-205X</orcidid><orcidid>https://orcid.org/0000-0002-2032-258X</orcidid><orcidid>https://orcid.org/0000-0002-0377-770X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-9476
ispartof Science robotics, 2022-05, Vol.7 (66), p.eabm5954-eabm5954
issn 2470-9476
2470-9476
language eng
recordid cdi_proquest_miscellaneous_2660099619
source Science Magazine
title Swarm of micro flying robots in the wild
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A27%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Swarm%20of%20micro%20flying%20robots%20in%20the%20wild&rft.jtitle=Science%20robotics&rft.au=Zhou,%20Xin&rft.date=2022-05-04&rft.volume=7&rft.issue=66&rft.spage=eabm5954&rft.epage=eabm5954&rft.pages=eabm5954-eabm5954&rft.issn=2470-9476&rft.eissn=2470-9476&rft_id=info:doi/10.1126/scirobotics.abm5954&rft_dat=%3Cproquest_cross%3E2660099619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660099619&rft_id=info:pmid/35507682&rfr_iscdi=true