Tri-view two-photon microscopic image registration and deblurring with convolutional neural networks

Two-photon fluorescence microscopy has enabled the three-dimensional (3D) neural imaging of deep cortical regions. While it can capture the detailed neural structures in the x–y image space, the image quality along the depth direction is lower because of lens blur, which often makes it difficult to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2022-08, Vol.152, p.57-69
Hauptverfasser: Lee, Sehyung, Kume, Hideaki, Urakubo, Hidetoshi, Kasai, Haruo, Ishii, Shin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69
container_issue
container_start_page 57
container_title Neural networks
container_volume 152
creator Lee, Sehyung
Kume, Hideaki
Urakubo, Hidetoshi
Kasai, Haruo
Ishii, Shin
description Two-photon fluorescence microscopy has enabled the three-dimensional (3D) neural imaging of deep cortical regions. While it can capture the detailed neural structures in the x–y image space, the image quality along the depth direction is lower because of lens blur, which often makes it difficult to identify the neural connectivity. To address this problem, we propose a novel approach for restoring the isotropic image volume by estimating and fusing the intersection regions of the images captured from three orthogonal viewpoints using convolutional neural networks (CNNs). Because convolution on 3D images is computationally complex, the proposed method takes the form of cascaded CNN models consisting of rigid transformation, dense registration, and deblurring networks for more efficient processing. In addition, to enable self-supervised learning, we trained the CNN models with simulated synthetic images by considering the distortions of the microscopic imaging process. Through extensive experiments, the proposed method achieved substantial image quality improvements.
doi_str_mv 10.1016/j.neunet.2022.04.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2659605778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608022001411</els_id><sourcerecordid>2659605778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-6e7507937a967eb5623ed1f17bbf0e5268464f795e05f8a931a70462a5310e503</originalsourceid><addsrcrecordid>eNp9kDtPxDAQhC0EguPxDxBKSZOwdmI7aZAQ4iUh0UBtOc7m8JGLD9vhxL_HxwEl1RYzs7vzEXJKoaBAxcWiGHEaMRYMGCugKoDSHTKjtWxyJmu2S2ZQN2UuoIYDchjCAgBEXZX75KDkHCraiBnpnr3NPyyus7h2-erVRTdmS2u8C8atrMnsUs8x8zi3IXodbZL12GUdtsPkvR3n2drG18y48cMN00bXQ5Y-898jLfVv4Zjs9XoIePIzj8jL7c3z9X3--HT3cH31mJsK6pgLlBxkU0rdCIktF6zEjvZUtm0PyFl6XlS9bDgC72vdlFRLqATTvKRJh_KInG_3rrx7nzBEtbTB4DDoEd0UFBO8EcClrJO12lo3TYPHXq18quo_FQW14asWastXbfgqqFTim2JnPxemdondX-gXaDJcbg2YeiauXgVjcTTYWY8mqs7Z_y98ARuQj0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659605778</pqid></control><display><type>article</type><title>Tri-view two-photon microscopic image registration and deblurring with convolutional neural networks</title><source>Elsevier ScienceDirect Journals</source><creator>Lee, Sehyung ; Kume, Hideaki ; Urakubo, Hidetoshi ; Kasai, Haruo ; Ishii, Shin</creator><creatorcontrib>Lee, Sehyung ; Kume, Hideaki ; Urakubo, Hidetoshi ; Kasai, Haruo ; Ishii, Shin</creatorcontrib><description>Two-photon fluorescence microscopy has enabled the three-dimensional (3D) neural imaging of deep cortical regions. While it can capture the detailed neural structures in the x–y image space, the image quality along the depth direction is lower because of lens blur, which often makes it difficult to identify the neural connectivity. To address this problem, we propose a novel approach for restoring the isotropic image volume by estimating and fusing the intersection regions of the images captured from three orthogonal viewpoints using convolutional neural networks (CNNs). Because convolution on 3D images is computationally complex, the proposed method takes the form of cascaded CNN models consisting of rigid transformation, dense registration, and deblurring networks for more efficient processing. In addition, to enable self-supervised learning, we trained the CNN models with simulated synthetic images by considering the distortions of the microscopic imaging process. Through extensive experiments, the proposed method achieved substantial image quality improvements.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2022.04.011</identifier><identifier>PMID: 35504196</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Convolutional neural network ; Deblurring ; Deep learning ; Microscopy image ; Registration</subject><ispartof>Neural networks, 2022-08, Vol.152, p.57-69</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-6e7507937a967eb5623ed1f17bbf0e5268464f795e05f8a931a70462a5310e503</citedby><cites>FETCH-LOGICAL-c408t-6e7507937a967eb5623ed1f17bbf0e5268464f795e05f8a931a70462a5310e503</cites><orcidid>0000-0003-2327-9027 ; 0000-0001-7137-4622 ; 0000-0003-2596-4546 ; 0000-0002-1816-0040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2022.04.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35504196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Sehyung</creatorcontrib><creatorcontrib>Kume, Hideaki</creatorcontrib><creatorcontrib>Urakubo, Hidetoshi</creatorcontrib><creatorcontrib>Kasai, Haruo</creatorcontrib><creatorcontrib>Ishii, Shin</creatorcontrib><title>Tri-view two-photon microscopic image registration and deblurring with convolutional neural networks</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Two-photon fluorescence microscopy has enabled the three-dimensional (3D) neural imaging of deep cortical regions. While it can capture the detailed neural structures in the x–y image space, the image quality along the depth direction is lower because of lens blur, which often makes it difficult to identify the neural connectivity. To address this problem, we propose a novel approach for restoring the isotropic image volume by estimating and fusing the intersection regions of the images captured from three orthogonal viewpoints using convolutional neural networks (CNNs). Because convolution on 3D images is computationally complex, the proposed method takes the form of cascaded CNN models consisting of rigid transformation, dense registration, and deblurring networks for more efficient processing. In addition, to enable self-supervised learning, we trained the CNN models with simulated synthetic images by considering the distortions of the microscopic imaging process. Through extensive experiments, the proposed method achieved substantial image quality improvements.</description><subject>Convolutional neural network</subject><subject>Deblurring</subject><subject>Deep learning</subject><subject>Microscopy image</subject><subject>Registration</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPxDAQhC0EguPxDxBKSZOwdmI7aZAQ4iUh0UBtOc7m8JGLD9vhxL_HxwEl1RYzs7vzEXJKoaBAxcWiGHEaMRYMGCugKoDSHTKjtWxyJmu2S2ZQN2UuoIYDchjCAgBEXZX75KDkHCraiBnpnr3NPyyus7h2-erVRTdmS2u8C8atrMnsUs8x8zi3IXodbZL12GUdtsPkvR3n2drG18y48cMN00bXQ5Y-898jLfVv4Zjs9XoIePIzj8jL7c3z9X3--HT3cH31mJsK6pgLlBxkU0rdCIktF6zEjvZUtm0PyFl6XlS9bDgC72vdlFRLqATTvKRJh_KInG_3rrx7nzBEtbTB4DDoEd0UFBO8EcClrJO12lo3TYPHXq18quo_FQW14asWastXbfgqqFTim2JnPxemdondX-gXaDJcbg2YeiauXgVjcTTYWY8mqs7Z_y98ARuQj0w</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Lee, Sehyung</creator><creator>Kume, Hideaki</creator><creator>Urakubo, Hidetoshi</creator><creator>Kasai, Haruo</creator><creator>Ishii, Shin</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2327-9027</orcidid><orcidid>https://orcid.org/0000-0001-7137-4622</orcidid><orcidid>https://orcid.org/0000-0003-2596-4546</orcidid><orcidid>https://orcid.org/0000-0002-1816-0040</orcidid></search><sort><creationdate>20220801</creationdate><title>Tri-view two-photon microscopic image registration and deblurring with convolutional neural networks</title><author>Lee, Sehyung ; Kume, Hideaki ; Urakubo, Hidetoshi ; Kasai, Haruo ; Ishii, Shin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-6e7507937a967eb5623ed1f17bbf0e5268464f795e05f8a931a70462a5310e503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convolutional neural network</topic><topic>Deblurring</topic><topic>Deep learning</topic><topic>Microscopy image</topic><topic>Registration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sehyung</creatorcontrib><creatorcontrib>Kume, Hideaki</creatorcontrib><creatorcontrib>Urakubo, Hidetoshi</creatorcontrib><creatorcontrib>Kasai, Haruo</creatorcontrib><creatorcontrib>Ishii, Shin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sehyung</au><au>Kume, Hideaki</au><au>Urakubo, Hidetoshi</au><au>Kasai, Haruo</au><au>Ishii, Shin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tri-view two-photon microscopic image registration and deblurring with convolutional neural networks</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>152</volume><spage>57</spage><epage>69</epage><pages>57-69</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Two-photon fluorescence microscopy has enabled the three-dimensional (3D) neural imaging of deep cortical regions. While it can capture the detailed neural structures in the x–y image space, the image quality along the depth direction is lower because of lens blur, which often makes it difficult to identify the neural connectivity. To address this problem, we propose a novel approach for restoring the isotropic image volume by estimating and fusing the intersection regions of the images captured from three orthogonal viewpoints using convolutional neural networks (CNNs). Because convolution on 3D images is computationally complex, the proposed method takes the form of cascaded CNN models consisting of rigid transformation, dense registration, and deblurring networks for more efficient processing. In addition, to enable self-supervised learning, we trained the CNN models with simulated synthetic images by considering the distortions of the microscopic imaging process. Through extensive experiments, the proposed method achieved substantial image quality improvements.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>35504196</pmid><doi>10.1016/j.neunet.2022.04.011</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2327-9027</orcidid><orcidid>https://orcid.org/0000-0001-7137-4622</orcidid><orcidid>https://orcid.org/0000-0003-2596-4546</orcidid><orcidid>https://orcid.org/0000-0002-1816-0040</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2022-08, Vol.152, p.57-69
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_2659605778
source Elsevier ScienceDirect Journals
subjects Convolutional neural network
Deblurring
Deep learning
Microscopy image
Registration
title Tri-view two-photon microscopic image registration and deblurring with convolutional neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tri-view%20two-photon%20microscopic%20image%20registration%20and%20deblurring%20with%20convolutional%20neural%20networks&rft.jtitle=Neural%20networks&rft.au=Lee,%20Sehyung&rft.date=2022-08-01&rft.volume=152&rft.spage=57&rft.epage=69&rft.pages=57-69&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2022.04.011&rft_dat=%3Cproquest_cross%3E2659605778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2659605778&rft_id=info:pmid/35504196&rft_els_id=S0893608022001411&rfr_iscdi=true