Classical Regression and Predictive Modeling
With the advent of personalized and stratified medicine, there has been much discussion about predictive modeling and the role of classical regression in modern medical research. We describe and distinguish the goals in these 2 frameworks for analysis. The assumptions underlying and utility of class...
Gespeichert in:
Veröffentlicht in: | World neurosurgery 2022-05, Vol.161, p.251-264 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 264 |
---|---|
container_issue | |
container_start_page | 251 |
container_title | World neurosurgery |
container_volume | 161 |
creator | Cook, Richard J. Lee, Ker-Ai Lo, Benjamin W.Y. Macdonald, R. Loch |
description | With the advent of personalized and stratified medicine, there has been much discussion about predictive modeling and the role of classical regression in modern medical research. We describe and distinguish the goals in these 2 frameworks for analysis.
The assumptions underlying and utility of classical regression are reviewed for continuous and binary outcomes. The tenets of predictive modeling are then discussed and contrasted. Principles are illustrated by simulation and through application of methods to a neurosurgical study.
Classical regression can be used for insights into causal mechanisms if careful thought is given to the role of variables of interest and potential confounders. In predictive modeling, interest lies more in accuracy of predictions and so alternative metrics are used to judge adequacy of models and methods; methods which average predictions over several contending models can improve predictive performance but these do not admit a single risk score.
Both classical regression and predictive modeling have important roles in modern medical research. Understanding the distinction between the 2 frameworks for analysis is important to place them in their appropriate context and interpreting findings from published studies appropriately. |
doi_str_mv | 10.1016/j.wneu.2022.02.030 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2659604997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S187887502200167X</els_id><sourcerecordid>2659604997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-6b78681febf126bc58e812a3bff3eb9cee9889fe41a84dc7b5dcb5591439c7da3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoVmr_gAvp0oUz5jHJJOBGii-oKKLrkGTulJTpTE1mKv57U1q79HLgnsW5B-6H0AXBOcFE3Czz7xaGnGJKc5zE8BE6I7KUmSyFOj54jkdoEuMSp2GkkCU7RSPGOea8oGfoetaYGL0zzfQdFgGS79qpaavpW4DKu95vYPrSVdD4dnGOTmrTRJjs9xh9Ptx_zJ6y-evj8-xunjnGRZ8JW0ohSQ22JlRYxyVIQg2zdc3AKgegpFQ1FMTIonKl5ZWznCtSMOXKyrAxutr1rkP3NUDs9cpHB01jWuiGqKngSuBCqTJF6S7qQhdjgFqvg1-Z8KMJ1ltQeqm3oPQWlMZJDKejy33_YFdQHU7-sKTA7S4A6cuNh6Cj89C6RCSA63XV-f_6fwHK8Hkr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659604997</pqid></control><display><type>article</type><title>Classical Regression and Predictive Modeling</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Cook, Richard J. ; Lee, Ker-Ai ; Lo, Benjamin W.Y. ; Macdonald, R. Loch</creator><creatorcontrib>Cook, Richard J. ; Lee, Ker-Ai ; Lo, Benjamin W.Y. ; Macdonald, R. Loch</creatorcontrib><description>With the advent of personalized and stratified medicine, there has been much discussion about predictive modeling and the role of classical regression in modern medical research. We describe and distinguish the goals in these 2 frameworks for analysis.
The assumptions underlying and utility of classical regression are reviewed for continuous and binary outcomes. The tenets of predictive modeling are then discussed and contrasted. Principles are illustrated by simulation and through application of methods to a neurosurgical study.
Classical regression can be used for insights into causal mechanisms if careful thought is given to the role of variables of interest and potential confounders. In predictive modeling, interest lies more in accuracy of predictions and so alternative metrics are used to judge adequacy of models and methods; methods which average predictions over several contending models can improve predictive performance but these do not admit a single risk score.
Both classical regression and predictive modeling have important roles in modern medical research. Understanding the distinction between the 2 frameworks for analysis is important to place them in their appropriate context and interpreting findings from published studies appropriately.</description><identifier>ISSN: 1878-8750</identifier><identifier>EISSN: 1878-8769</identifier><identifier>DOI: 10.1016/j.wneu.2022.02.030</identifier><identifier>PMID: 35505542</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Association ; Benchmarking ; Biomedical Research ; Causal analysis ; Classification ; Computer Simulation ; Explained variation ; Humans ; Prediction ; Predictive accuracy</subject><ispartof>World neurosurgery, 2022-05, Vol.161, p.251-264</ispartof><rights>2022 Elsevier Inc.</rights><rights>Copyright © 2022 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-6b78681febf126bc58e812a3bff3eb9cee9889fe41a84dc7b5dcb5591439c7da3</citedby><cites>FETCH-LOGICAL-c356t-6b78681febf126bc58e812a3bff3eb9cee9889fe41a84dc7b5dcb5591439c7da3</cites><orcidid>0000-0002-7422-1418 ; 0000-0003-4024-8070 ; 0000-0002-1414-4908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S187887502200167X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35505542$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cook, Richard J.</creatorcontrib><creatorcontrib>Lee, Ker-Ai</creatorcontrib><creatorcontrib>Lo, Benjamin W.Y.</creatorcontrib><creatorcontrib>Macdonald, R. Loch</creatorcontrib><title>Classical Regression and Predictive Modeling</title><title>World neurosurgery</title><addtitle>World Neurosurg</addtitle><description>With the advent of personalized and stratified medicine, there has been much discussion about predictive modeling and the role of classical regression in modern medical research. We describe and distinguish the goals in these 2 frameworks for analysis.
The assumptions underlying and utility of classical regression are reviewed for continuous and binary outcomes. The tenets of predictive modeling are then discussed and contrasted. Principles are illustrated by simulation and through application of methods to a neurosurgical study.
Classical regression can be used for insights into causal mechanisms if careful thought is given to the role of variables of interest and potential confounders. In predictive modeling, interest lies more in accuracy of predictions and so alternative metrics are used to judge adequacy of models and methods; methods which average predictions over several contending models can improve predictive performance but these do not admit a single risk score.
Both classical regression and predictive modeling have important roles in modern medical research. Understanding the distinction between the 2 frameworks for analysis is important to place them in their appropriate context and interpreting findings from published studies appropriately.</description><subject>Association</subject><subject>Benchmarking</subject><subject>Biomedical Research</subject><subject>Causal analysis</subject><subject>Classification</subject><subject>Computer Simulation</subject><subject>Explained variation</subject><subject>Humans</subject><subject>Prediction</subject><subject>Predictive accuracy</subject><issn>1878-8750</issn><issn>1878-8769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLAzEUhYMoVmr_gAvp0oUz5jHJJOBGii-oKKLrkGTulJTpTE1mKv57U1q79HLgnsW5B-6H0AXBOcFE3Czz7xaGnGJKc5zE8BE6I7KUmSyFOj54jkdoEuMSp2GkkCU7RSPGOea8oGfoetaYGL0zzfQdFgGS79qpaavpW4DKu95vYPrSVdD4dnGOTmrTRJjs9xh9Ptx_zJ6y-evj8-xunjnGRZ8JW0ohSQ22JlRYxyVIQg2zdc3AKgegpFQ1FMTIonKl5ZWznCtSMOXKyrAxutr1rkP3NUDs9cpHB01jWuiGqKngSuBCqTJF6S7qQhdjgFqvg1-Z8KMJ1ltQeqm3oPQWlMZJDKejy33_YFdQHU7-sKTA7S4A6cuNh6Cj89C6RCSA63XV-f_6fwHK8Hkr</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Cook, Richard J.</creator><creator>Lee, Ker-Ai</creator><creator>Lo, Benjamin W.Y.</creator><creator>Macdonald, R. Loch</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7422-1418</orcidid><orcidid>https://orcid.org/0000-0003-4024-8070</orcidid><orcidid>https://orcid.org/0000-0002-1414-4908</orcidid></search><sort><creationdate>202205</creationdate><title>Classical Regression and Predictive Modeling</title><author>Cook, Richard J. ; Lee, Ker-Ai ; Lo, Benjamin W.Y. ; Macdonald, R. Loch</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-6b78681febf126bc58e812a3bff3eb9cee9889fe41a84dc7b5dcb5591439c7da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Association</topic><topic>Benchmarking</topic><topic>Biomedical Research</topic><topic>Causal analysis</topic><topic>Classification</topic><topic>Computer Simulation</topic><topic>Explained variation</topic><topic>Humans</topic><topic>Prediction</topic><topic>Predictive accuracy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cook, Richard J.</creatorcontrib><creatorcontrib>Lee, Ker-Ai</creatorcontrib><creatorcontrib>Lo, Benjamin W.Y.</creatorcontrib><creatorcontrib>Macdonald, R. Loch</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>World neurosurgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cook, Richard J.</au><au>Lee, Ker-Ai</au><au>Lo, Benjamin W.Y.</au><au>Macdonald, R. Loch</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classical Regression and Predictive Modeling</atitle><jtitle>World neurosurgery</jtitle><addtitle>World Neurosurg</addtitle><date>2022-05</date><risdate>2022</risdate><volume>161</volume><spage>251</spage><epage>264</epage><pages>251-264</pages><issn>1878-8750</issn><eissn>1878-8769</eissn><abstract>With the advent of personalized and stratified medicine, there has been much discussion about predictive modeling and the role of classical regression in modern medical research. We describe and distinguish the goals in these 2 frameworks for analysis.
The assumptions underlying and utility of classical regression are reviewed for continuous and binary outcomes. The tenets of predictive modeling are then discussed and contrasted. Principles are illustrated by simulation and through application of methods to a neurosurgical study.
Classical regression can be used for insights into causal mechanisms if careful thought is given to the role of variables of interest and potential confounders. In predictive modeling, interest lies more in accuracy of predictions and so alternative metrics are used to judge adequacy of models and methods; methods which average predictions over several contending models can improve predictive performance but these do not admit a single risk score.
Both classical regression and predictive modeling have important roles in modern medical research. Understanding the distinction between the 2 frameworks for analysis is important to place them in their appropriate context and interpreting findings from published studies appropriately.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35505542</pmid><doi>10.1016/j.wneu.2022.02.030</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7422-1418</orcidid><orcidid>https://orcid.org/0000-0003-4024-8070</orcidid><orcidid>https://orcid.org/0000-0002-1414-4908</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1878-8750 |
ispartof | World neurosurgery, 2022-05, Vol.161, p.251-264 |
issn | 1878-8750 1878-8769 |
language | eng |
recordid | cdi_proquest_miscellaneous_2659604997 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Association Benchmarking Biomedical Research Causal analysis Classification Computer Simulation Explained variation Humans Prediction Predictive accuracy |
title | Classical Regression and Predictive Modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A58%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classical%20Regression%20and%20Predictive%20Modeling&rft.jtitle=World%20neurosurgery&rft.au=Cook,%20Richard%20J.&rft.date=2022-05&rft.volume=161&rft.spage=251&rft.epage=264&rft.pages=251-264&rft.issn=1878-8750&rft.eissn=1878-8769&rft_id=info:doi/10.1016/j.wneu.2022.02.030&rft_dat=%3Cproquest_cross%3E2659604997%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2659604997&rft_id=info:pmid/35505542&rft_els_id=S187887502200167X&rfr_iscdi=true |