Classical Regression and Predictive Modeling

With the advent of personalized and stratified medicine, there has been much discussion about predictive modeling and the role of classical regression in modern medical research. We describe and distinguish the goals in these 2 frameworks for analysis. The assumptions underlying and utility of class...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World neurosurgery 2022-05, Vol.161, p.251-264
Hauptverfasser: Cook, Richard J., Lee, Ker-Ai, Lo, Benjamin W.Y., Macdonald, R. Loch
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 264
container_issue
container_start_page 251
container_title World neurosurgery
container_volume 161
creator Cook, Richard J.
Lee, Ker-Ai
Lo, Benjamin W.Y.
Macdonald, R. Loch
description With the advent of personalized and stratified medicine, there has been much discussion about predictive modeling and the role of classical regression in modern medical research. We describe and distinguish the goals in these 2 frameworks for analysis. The assumptions underlying and utility of classical regression are reviewed for continuous and binary outcomes. The tenets of predictive modeling are then discussed and contrasted. Principles are illustrated by simulation and through application of methods to a neurosurgical study. Classical regression can be used for insights into causal mechanisms if careful thought is given to the role of variables of interest and potential confounders. In predictive modeling, interest lies more in accuracy of predictions and so alternative metrics are used to judge adequacy of models and methods; methods which average predictions over several contending models can improve predictive performance but these do not admit a single risk score. Both classical regression and predictive modeling have important roles in modern medical research. Understanding the distinction between the 2 frameworks for analysis is important to place them in their appropriate context and interpreting findings from published studies appropriately.
doi_str_mv 10.1016/j.wneu.2022.02.030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2659604997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S187887502200167X</els_id><sourcerecordid>2659604997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-6b78681febf126bc58e812a3bff3eb9cee9889fe41a84dc7b5dcb5591439c7da3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoVmr_gAvp0oUz5jHJJOBGii-oKKLrkGTulJTpTE1mKv57U1q79HLgnsW5B-6H0AXBOcFE3Czz7xaGnGJKc5zE8BE6I7KUmSyFOj54jkdoEuMSp2GkkCU7RSPGOea8oGfoetaYGL0zzfQdFgGS79qpaavpW4DKu95vYPrSVdD4dnGOTmrTRJjs9xh9Ptx_zJ6y-evj8-xunjnGRZ8JW0ohSQ22JlRYxyVIQg2zdc3AKgegpFQ1FMTIonKl5ZWznCtSMOXKyrAxutr1rkP3NUDs9cpHB01jWuiGqKngSuBCqTJF6S7qQhdjgFqvg1-Z8KMJ1ltQeqm3oPQWlMZJDKejy33_YFdQHU7-sKTA7S4A6cuNh6Cj89C6RCSA63XV-f_6fwHK8Hkr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659604997</pqid></control><display><type>article</type><title>Classical Regression and Predictive Modeling</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Cook, Richard J. ; Lee, Ker-Ai ; Lo, Benjamin W.Y. ; Macdonald, R. Loch</creator><creatorcontrib>Cook, Richard J. ; Lee, Ker-Ai ; Lo, Benjamin W.Y. ; Macdonald, R. Loch</creatorcontrib><description>With the advent of personalized and stratified medicine, there has been much discussion about predictive modeling and the role of classical regression in modern medical research. We describe and distinguish the goals in these 2 frameworks for analysis. The assumptions underlying and utility of classical regression are reviewed for continuous and binary outcomes. The tenets of predictive modeling are then discussed and contrasted. Principles are illustrated by simulation and through application of methods to a neurosurgical study. Classical regression can be used for insights into causal mechanisms if careful thought is given to the role of variables of interest and potential confounders. In predictive modeling, interest lies more in accuracy of predictions and so alternative metrics are used to judge adequacy of models and methods; methods which average predictions over several contending models can improve predictive performance but these do not admit a single risk score. Both classical regression and predictive modeling have important roles in modern medical research. Understanding the distinction between the 2 frameworks for analysis is important to place them in their appropriate context and interpreting findings from published studies appropriately.</description><identifier>ISSN: 1878-8750</identifier><identifier>EISSN: 1878-8769</identifier><identifier>DOI: 10.1016/j.wneu.2022.02.030</identifier><identifier>PMID: 35505542</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Association ; Benchmarking ; Biomedical Research ; Causal analysis ; Classification ; Computer Simulation ; Explained variation ; Humans ; Prediction ; Predictive accuracy</subject><ispartof>World neurosurgery, 2022-05, Vol.161, p.251-264</ispartof><rights>2022 Elsevier Inc.</rights><rights>Copyright © 2022 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-6b78681febf126bc58e812a3bff3eb9cee9889fe41a84dc7b5dcb5591439c7da3</citedby><cites>FETCH-LOGICAL-c356t-6b78681febf126bc58e812a3bff3eb9cee9889fe41a84dc7b5dcb5591439c7da3</cites><orcidid>0000-0002-7422-1418 ; 0000-0003-4024-8070 ; 0000-0002-1414-4908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S187887502200167X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35505542$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cook, Richard J.</creatorcontrib><creatorcontrib>Lee, Ker-Ai</creatorcontrib><creatorcontrib>Lo, Benjamin W.Y.</creatorcontrib><creatorcontrib>Macdonald, R. Loch</creatorcontrib><title>Classical Regression and Predictive Modeling</title><title>World neurosurgery</title><addtitle>World Neurosurg</addtitle><description>With the advent of personalized and stratified medicine, there has been much discussion about predictive modeling and the role of classical regression in modern medical research. We describe and distinguish the goals in these 2 frameworks for analysis. The assumptions underlying and utility of classical regression are reviewed for continuous and binary outcomes. The tenets of predictive modeling are then discussed and contrasted. Principles are illustrated by simulation and through application of methods to a neurosurgical study. Classical regression can be used for insights into causal mechanisms if careful thought is given to the role of variables of interest and potential confounders. In predictive modeling, interest lies more in accuracy of predictions and so alternative metrics are used to judge adequacy of models and methods; methods which average predictions over several contending models can improve predictive performance but these do not admit a single risk score. Both classical regression and predictive modeling have important roles in modern medical research. Understanding the distinction between the 2 frameworks for analysis is important to place them in their appropriate context and interpreting findings from published studies appropriately.</description><subject>Association</subject><subject>Benchmarking</subject><subject>Biomedical Research</subject><subject>Causal analysis</subject><subject>Classification</subject><subject>Computer Simulation</subject><subject>Explained variation</subject><subject>Humans</subject><subject>Prediction</subject><subject>Predictive accuracy</subject><issn>1878-8750</issn><issn>1878-8769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLAzEUhYMoVmr_gAvp0oUz5jHJJOBGii-oKKLrkGTulJTpTE1mKv57U1q79HLgnsW5B-6H0AXBOcFE3Czz7xaGnGJKc5zE8BE6I7KUmSyFOj54jkdoEuMSp2GkkCU7RSPGOea8oGfoetaYGL0zzfQdFgGS79qpaavpW4DKu95vYPrSVdD4dnGOTmrTRJjs9xh9Ptx_zJ6y-evj8-xunjnGRZ8JW0ohSQ22JlRYxyVIQg2zdc3AKgegpFQ1FMTIonKl5ZWznCtSMOXKyrAxutr1rkP3NUDs9cpHB01jWuiGqKngSuBCqTJF6S7qQhdjgFqvg1-Z8KMJ1ltQeqm3oPQWlMZJDKejy33_YFdQHU7-sKTA7S4A6cuNh6Cj89C6RCSA63XV-f_6fwHK8Hkr</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Cook, Richard J.</creator><creator>Lee, Ker-Ai</creator><creator>Lo, Benjamin W.Y.</creator><creator>Macdonald, R. Loch</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7422-1418</orcidid><orcidid>https://orcid.org/0000-0003-4024-8070</orcidid><orcidid>https://orcid.org/0000-0002-1414-4908</orcidid></search><sort><creationdate>202205</creationdate><title>Classical Regression and Predictive Modeling</title><author>Cook, Richard J. ; Lee, Ker-Ai ; Lo, Benjamin W.Y. ; Macdonald, R. Loch</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-6b78681febf126bc58e812a3bff3eb9cee9889fe41a84dc7b5dcb5591439c7da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Association</topic><topic>Benchmarking</topic><topic>Biomedical Research</topic><topic>Causal analysis</topic><topic>Classification</topic><topic>Computer Simulation</topic><topic>Explained variation</topic><topic>Humans</topic><topic>Prediction</topic><topic>Predictive accuracy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cook, Richard J.</creatorcontrib><creatorcontrib>Lee, Ker-Ai</creatorcontrib><creatorcontrib>Lo, Benjamin W.Y.</creatorcontrib><creatorcontrib>Macdonald, R. Loch</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>World neurosurgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cook, Richard J.</au><au>Lee, Ker-Ai</au><au>Lo, Benjamin W.Y.</au><au>Macdonald, R. Loch</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classical Regression and Predictive Modeling</atitle><jtitle>World neurosurgery</jtitle><addtitle>World Neurosurg</addtitle><date>2022-05</date><risdate>2022</risdate><volume>161</volume><spage>251</spage><epage>264</epage><pages>251-264</pages><issn>1878-8750</issn><eissn>1878-8769</eissn><abstract>With the advent of personalized and stratified medicine, there has been much discussion about predictive modeling and the role of classical regression in modern medical research. We describe and distinguish the goals in these 2 frameworks for analysis. The assumptions underlying and utility of classical regression are reviewed for continuous and binary outcomes. The tenets of predictive modeling are then discussed and contrasted. Principles are illustrated by simulation and through application of methods to a neurosurgical study. Classical regression can be used for insights into causal mechanisms if careful thought is given to the role of variables of interest and potential confounders. In predictive modeling, interest lies more in accuracy of predictions and so alternative metrics are used to judge adequacy of models and methods; methods which average predictions over several contending models can improve predictive performance but these do not admit a single risk score. Both classical regression and predictive modeling have important roles in modern medical research. Understanding the distinction between the 2 frameworks for analysis is important to place them in their appropriate context and interpreting findings from published studies appropriately.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35505542</pmid><doi>10.1016/j.wneu.2022.02.030</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7422-1418</orcidid><orcidid>https://orcid.org/0000-0003-4024-8070</orcidid><orcidid>https://orcid.org/0000-0002-1414-4908</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1878-8750
ispartof World neurosurgery, 2022-05, Vol.161, p.251-264
issn 1878-8750
1878-8769
language eng
recordid cdi_proquest_miscellaneous_2659604997
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Association
Benchmarking
Biomedical Research
Causal analysis
Classification
Computer Simulation
Explained variation
Humans
Prediction
Predictive accuracy
title Classical Regression and Predictive Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A58%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classical%20Regression%20and%20Predictive%20Modeling&rft.jtitle=World%20neurosurgery&rft.au=Cook,%20Richard%20J.&rft.date=2022-05&rft.volume=161&rft.spage=251&rft.epage=264&rft.pages=251-264&rft.issn=1878-8750&rft.eissn=1878-8769&rft_id=info:doi/10.1016/j.wneu.2022.02.030&rft_dat=%3Cproquest_cross%3E2659604997%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2659604997&rft_id=info:pmid/35505542&rft_els_id=S187887502200167X&rfr_iscdi=true