Fabrication of active whey Protein isolate/oleic acid emulsion based film as a promising bio-material for cheese packaging

Emulsion is a colloidal dispersion for delivering natural antimicrobial, antioxidant, and bioactive compounds to improve the product's quality. The present study aimed to develop the active emulsion film based on whey protein isolate (WPI) by adding oleic acid (OA) (0, 10, and 20% w/w) and gree...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food science and technology international 2023-06, Vol.29 (4), p.395-405
Hauptverfasser: Kashiri, Mahboobeh, Maghsoudlou, Yahya, Moayedi, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Emulsion is a colloidal dispersion for delivering natural antimicrobial, antioxidant, and bioactive compounds to improve the product's quality. The present study aimed to develop the active emulsion film based on whey protein isolate (WPI) by adding oleic acid (OA) (0, 10, and 20% w/w) and green tea extract (GTE) (0 and 0.5% w/v) for cheese packaging. Results showed that the opacity, flexibility, and water barrier properties of WPI hydrogel-based film were significantly increased by adding 10% OA. Active release from emulsion-based films was governed by pH and the nature of food model systems. The minimum release occurred in the acidic food model system. After 5 h exposure in the acid food model system, the obtained release from the active film containing OA 0, 10, and 20% was 52.39, 48.97, and 57.24% of incorporated GTE, respectively. The log reduction value (LRV) of active emulsion film against bacteria was significantly affected by the food model system. Moreover, packed lactic coagulated cheese delivered more phenolic compound of GTE than processed spread cheese. Korsmeyer-Peppas model and Weibull with lag were suggested as appropriate models to forecast the release kinetic of GTE.
ISSN:1082-0132
1532-1738
DOI:10.1177/10820132221095329