Exploiting nanoscale effects enables ultra-low temperature to produce porous silicon

The magnesiothermic reduction (MgTR) of silica has been recently shown to produce porous silicon which can be used in applications such as photocatalysis and energy storage. MgTR typically requires ≥650 °C to achieve meaningful conversions. However, high temperatures are detrimental to the highly de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2021-11, Vol.11 (56), p.35182-35186
Hauptverfasser: Yan, Maximilian, Patwardhan, Siddharth V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35186
container_issue 56
container_start_page 35182
container_title RSC advances
container_volume 11
creator Yan, Maximilian
Patwardhan, Siddharth V
description The magnesiothermic reduction (MgTR) of silica has been recently shown to produce porous silicon which can be used in applications such as photocatalysis and energy storage. MgTR typically requires ≥650 °C to achieve meaningful conversions. However, high temperatures are detrimental to the highly desired porosity of silicon, while also raising doubts over the sustainability of the process. In this work we show for the first time that the onset temperature of the MgTR is dependent on the particle size of the feedstock silica. Using both in-house synthesised and commercial silica, we have shown that only particles ≤20 nm are able to trigger the reaction at temperatures as low as 380 °C, well below a previously reported cut-off temperature of 500 °C, producing porous, crystalline silicon. The decrease in temperature requirement from ≥650 °C to 380 °C achieved with little modification to the overall process, without any additional downstream processing, presents significant implications for sustainable and economical manufacturing of porous silicon. We show the first evidence of reduction of silica occurring at temperatures as low as 380 °C to produce porous silicon without sacrificing the porosity and yield, thus paving the way for sustainable manufacturing.
doi_str_mv 10.1039/d1ra07212a
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2658644316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599148007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-c374d6477e8debda1480b86386f711bcd11208d10fc5049861dc69a6e492032b3</originalsourceid><addsrcrecordid>eNpdkd1rFTEQxYMottS--K4EfBFhNZNks8mLcGnrBxQEqc8hm8zWLbnJmuxW_e-77a3X6rzMwPw4nMMh5Dmwt8CEeRegONZx4O4ROeRMqoYzZR4_uA_Ica1XbB3VAlfwlByIVhoBGg7JxdmvKeZxHtMlTS7l6l1EisOAfq4Uk-sjVrrEubgm5p90xu2Exc1LQTpnOpUcFo90yiUvldYxjj6nZ-TJ4GLF4_t9RL59OLs4-dScf_n4-WRz3njJ9dx40cmgZNehDtgHB1KzXiuh1dAB9D4AcKYDsMG3TBqtIHhlnEJpOBO8F0fk_U53WvotBo9ptRntVMatK79tdqP995PG7_YyX1vDpGCsWwVe3wuU_GPBOtvtWD3G6BKueSxXrVZSClAr-uo_9CovJa3xLG-NufV-J_hmR_mSay047M0As7d92VP4urnra7PCLx_a36N_2lmBFzugVL___i1c3ACeRpq0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599148007</pqid></control><display><type>article</type><title>Exploiting nanoscale effects enables ultra-low temperature to produce porous silicon</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Yan, Maximilian ; Patwardhan, Siddharth V</creator><creatorcontrib>Yan, Maximilian ; Patwardhan, Siddharth V</creatorcontrib><description>The magnesiothermic reduction (MgTR) of silica has been recently shown to produce porous silicon which can be used in applications such as photocatalysis and energy storage. MgTR typically requires ≥650 °C to achieve meaningful conversions. However, high temperatures are detrimental to the highly desired porosity of silicon, while also raising doubts over the sustainability of the process. In this work we show for the first time that the onset temperature of the MgTR is dependent on the particle size of the feedstock silica. Using both in-house synthesised and commercial silica, we have shown that only particles ≤20 nm are able to trigger the reaction at temperatures as low as 380 °C, well below a previously reported cut-off temperature of 500 °C, producing porous, crystalline silicon. The decrease in temperature requirement from ≥650 °C to 380 °C achieved with little modification to the overall process, without any additional downstream processing, presents significant implications for sustainable and economical manufacturing of porous silicon. We show the first evidence of reduction of silica occurring at temperatures as low as 380 °C to produce porous silicon without sacrificing the porosity and yield, thus paving the way for sustainable manufacturing.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d1ra07212a</identifier><identifier>PMID: 35493181</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemistry ; Energy storage ; High temperature ; Low temperature ; Porous silicon ; Silicon ; Silicon dioxide ; Sustainability</subject><ispartof>RSC advances, 2021-11, Vol.11 (56), p.35182-35186</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2021</rights><rights>This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-c374d6477e8debda1480b86386f711bcd11208d10fc5049861dc69a6e492032b3</citedby><cites>FETCH-LOGICAL-c428t-c374d6477e8debda1480b86386f711bcd11208d10fc5049861dc69a6e492032b3</cites><orcidid>0000-0002-4958-8840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043007/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043007/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27915,27916,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35493181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Maximilian</creatorcontrib><creatorcontrib>Patwardhan, Siddharth V</creatorcontrib><title>Exploiting nanoscale effects enables ultra-low temperature to produce porous silicon</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>The magnesiothermic reduction (MgTR) of silica has been recently shown to produce porous silicon which can be used in applications such as photocatalysis and energy storage. MgTR typically requires ≥650 °C to achieve meaningful conversions. However, high temperatures are detrimental to the highly desired porosity of silicon, while also raising doubts over the sustainability of the process. In this work we show for the first time that the onset temperature of the MgTR is dependent on the particle size of the feedstock silica. Using both in-house synthesised and commercial silica, we have shown that only particles ≤20 nm are able to trigger the reaction at temperatures as low as 380 °C, well below a previously reported cut-off temperature of 500 °C, producing porous, crystalline silicon. The decrease in temperature requirement from ≥650 °C to 380 °C achieved with little modification to the overall process, without any additional downstream processing, presents significant implications for sustainable and economical manufacturing of porous silicon. We show the first evidence of reduction of silica occurring at temperatures as low as 380 °C to produce porous silicon without sacrificing the porosity and yield, thus paving the way for sustainable manufacturing.</description><subject>Chemistry</subject><subject>Energy storage</subject><subject>High temperature</subject><subject>Low temperature</subject><subject>Porous silicon</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>Sustainability</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkd1rFTEQxYMottS--K4EfBFhNZNks8mLcGnrBxQEqc8hm8zWLbnJmuxW_e-77a3X6rzMwPw4nMMh5Dmwt8CEeRegONZx4O4ROeRMqoYzZR4_uA_Ica1XbB3VAlfwlByIVhoBGg7JxdmvKeZxHtMlTS7l6l1EisOAfq4Uk-sjVrrEubgm5p90xu2Exc1LQTpnOpUcFo90yiUvldYxjj6nZ-TJ4GLF4_t9RL59OLs4-dScf_n4-WRz3njJ9dx40cmgZNehDtgHB1KzXiuh1dAB9D4AcKYDsMG3TBqtIHhlnEJpOBO8F0fk_U53WvotBo9ptRntVMatK79tdqP995PG7_YyX1vDpGCsWwVe3wuU_GPBOtvtWD3G6BKueSxXrVZSClAr-uo_9CovJa3xLG-NufV-J_hmR_mSay047M0As7d92VP4urnra7PCLx_a36N_2lmBFzugVL___i1c3ACeRpq0</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Yan, Maximilian</creator><creator>Patwardhan, Siddharth V</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4958-8840</orcidid></search><sort><creationdate>20211101</creationdate><title>Exploiting nanoscale effects enables ultra-low temperature to produce porous silicon</title><author>Yan, Maximilian ; Patwardhan, Siddharth V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-c374d6477e8debda1480b86386f711bcd11208d10fc5049861dc69a6e492032b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Energy storage</topic><topic>High temperature</topic><topic>Low temperature</topic><topic>Porous silicon</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>Sustainability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Maximilian</creatorcontrib><creatorcontrib>Patwardhan, Siddharth V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Maximilian</au><au>Patwardhan, Siddharth V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting nanoscale effects enables ultra-low temperature to produce porous silicon</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>11</volume><issue>56</issue><spage>35182</spage><epage>35186</epage><pages>35182-35186</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>The magnesiothermic reduction (MgTR) of silica has been recently shown to produce porous silicon which can be used in applications such as photocatalysis and energy storage. MgTR typically requires ≥650 °C to achieve meaningful conversions. However, high temperatures are detrimental to the highly desired porosity of silicon, while also raising doubts over the sustainability of the process. In this work we show for the first time that the onset temperature of the MgTR is dependent on the particle size of the feedstock silica. Using both in-house synthesised and commercial silica, we have shown that only particles ≤20 nm are able to trigger the reaction at temperatures as low as 380 °C, well below a previously reported cut-off temperature of 500 °C, producing porous, crystalline silicon. The decrease in temperature requirement from ≥650 °C to 380 °C achieved with little modification to the overall process, without any additional downstream processing, presents significant implications for sustainable and economical manufacturing of porous silicon. We show the first evidence of reduction of silica occurring at temperatures as low as 380 °C to produce porous silicon without sacrificing the porosity and yield, thus paving the way for sustainable manufacturing.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35493181</pmid><doi>10.1039/d1ra07212a</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4958-8840</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2021-11, Vol.11 (56), p.35182-35186
issn 2046-2069
2046-2069
language eng
recordid cdi_proquest_miscellaneous_2658644316
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Chemistry
Energy storage
High temperature
Low temperature
Porous silicon
Silicon
Silicon dioxide
Sustainability
title Exploiting nanoscale effects enables ultra-low temperature to produce porous silicon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A16%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20nanoscale%20effects%20enables%20ultra-low%20temperature%20to%20produce%20porous%20silicon&rft.jtitle=RSC%20advances&rft.au=Yan,%20Maximilian&rft.date=2021-11-01&rft.volume=11&rft.issue=56&rft.spage=35182&rft.epage=35186&rft.pages=35182-35186&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d1ra07212a&rft_dat=%3Cproquest_pubme%3E2599148007%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599148007&rft_id=info:pmid/35493181&rfr_iscdi=true