Graphene reinforced carbon nanofiber engineering enhances Li storage performances of germanium oxide

The rational design of electrode materials with high power and energy densities, good operational safety, and long cycle life remains a great challenge for developing advanced battery systems. As a promising electrode material for rechargeable batteries, germanium oxide (GeO 2 ) shows high capacity,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2020-03, Vol.1 (18), p.1873-1878
Hauptverfasser: Zhang, Xu, Wei, Wei, Wang, Kefeng, Xiao, Guoqing, Xu, Maotian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1878
container_issue 18
container_start_page 1873
container_title RSC advances
container_volume 1
creator Zhang, Xu
Wei, Wei
Wang, Kefeng
Xiao, Guoqing
Xu, Maotian
description The rational design of electrode materials with high power and energy densities, good operational safety, and long cycle life remains a great challenge for developing advanced battery systems. As a promising electrode material for rechargeable batteries, germanium oxide (GeO 2 ) shows high capacity, but suffers from rapid capacity fading caused by its large volume variation during charge/discharge processes and poor rate performance owing to low intrinsic electronic conductivity. In this study, a novel one-dimensional (1D) carbon/graphene-nanocable-GeO 2 nanocomposite (denoted as GeO 2 /nanocable) is rationally designed and prepared via a facile electrospinning method. Specifically, amorphous carbon and graphene spontaneously construct a nanocable structure, in which graphene acts as the "core" and amorphous carbon as the "shell", and GeO 2 nanoparticles are encapsulated in the nanocable. The graphene "core" promises good electrical conductivity while the amorphous carbon "shell" guarantees fast Li ions diffusion. When tested as an anode material for rechargeable lithium ion batteries, the GeO 2 /nanocable exhibits remarkable Li storage performance, including high reversible capacity (900 mA h g −1 ), high capacity retention (91% after 100 cycles), and good rate performance (595 mA h g −1 at 5000 mA g −1 ). In the GeO 2 /nanocable, amorphous carbon and graphene spontaneously construct a nanocable structure, graphene "core" promises the good electrical conductivity while the amorphous carbon "shell" guarantees the fast Li ions diffusion.
doi_str_mv 10.1039/d0ra00720j
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2658644305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658644305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-ecb43c3ef81e0cd1870ccab4c566b37c188fcc441c82eea0db222b239d171dee3</originalsourceid><addsrcrecordid>eNp9kk2LFDEQhoMo7rLuxbsS8SLCaOWjvy7CsuqqDAii55CuVPdkmE7aZFr035t11nH1YC5VqXrqpcIbxh4KeCFAdS8dJAvQSNjeYacSdL2SUHd3b-Un7DznLZRTV0LW4j47UZXuZKflKXNXyc4bCsQT-TDEhOQ42tTHwIMNcfA9JU5h9IEo-TCWfGMDUuZrz_M-JjsSnymV0elQjwMf6fril4nH797RA3ZvsLtM5zfxjH15--bz5bvV-uPV-8uL9Qp1pfcrwl4rVDS0ggCdaBtAtL3Gqq571aBo2wFRa4GtJLLgeillL1XnRCMckTpjrw6689JP5JDCPtmdmZOfbPphovXm707wGzPGb6aDCnTTFoFnNwIpfl0o783kM9JuZwPFJRtZV22ttYKqoE__QbdxSaE8z0jVNG0nK6kK9fxAYYo5JxqOywgw1_6Z1_Dp4pd_Hwr8-Pb6R_S3WwV4cgBSxmP3zwcwsxsK8-h_jPoJC6Wtcw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377892523</pqid></control><display><type>article</type><title>Graphene reinforced carbon nanofiber engineering enhances Li storage performances of germanium oxide</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Zhang, Xu ; Wei, Wei ; Wang, Kefeng ; Xiao, Guoqing ; Xu, Maotian</creator><creatorcontrib>Zhang, Xu ; Wei, Wei ; Wang, Kefeng ; Xiao, Guoqing ; Xu, Maotian</creatorcontrib><description>The rational design of electrode materials with high power and energy densities, good operational safety, and long cycle life remains a great challenge for developing advanced battery systems. As a promising electrode material for rechargeable batteries, germanium oxide (GeO 2 ) shows high capacity, but suffers from rapid capacity fading caused by its large volume variation during charge/discharge processes and poor rate performance owing to low intrinsic electronic conductivity. In this study, a novel one-dimensional (1D) carbon/graphene-nanocable-GeO 2 nanocomposite (denoted as GeO 2 /nanocable) is rationally designed and prepared via a facile electrospinning method. Specifically, amorphous carbon and graphene spontaneously construct a nanocable structure, in which graphene acts as the "core" and amorphous carbon as the "shell", and GeO 2 nanoparticles are encapsulated in the nanocable. The graphene "core" promises good electrical conductivity while the amorphous carbon "shell" guarantees fast Li ions diffusion. When tested as an anode material for rechargeable lithium ion batteries, the GeO 2 /nanocable exhibits remarkable Li storage performance, including high reversible capacity (900 mA h g −1 ), high capacity retention (91% after 100 cycles), and good rate performance (595 mA h g −1 at 5000 mA g −1 ). In the GeO 2 /nanocable, amorphous carbon and graphene spontaneously construct a nanocable structure, graphene "core" promises the good electrical conductivity while the amorphous carbon "shell" guarantees the fast Li ions diffusion.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d0ra00720j</identifier><identifier>PMID: 35492942</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Anodes ; Batteries ; Carbon ; Carbon fibers ; Chemistry ; Diffusion rate ; Electrical resistivity ; Electrode materials ; Electrodes ; Germanium ; Germanium oxides ; Graphene ; Lithium ; Lithium-ion batteries ; Nanocomposites ; Nanofibers ; Nanoparticles ; Rechargeable batteries ; Storage batteries</subject><ispartof>RSC advances, 2020-03, Vol.1 (18), p.1873-1878</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-ecb43c3ef81e0cd1870ccab4c566b37c188fcc441c82eea0db222b239d171dee3</citedby><cites>FETCH-LOGICAL-c454t-ecb43c3ef81e0cd1870ccab4c566b37c188fcc441c82eea0db222b239d171dee3</cites><orcidid>0000-0002-7211-116X ; 0000-0003-0231-4591 ; 0000-0002-8435-5313</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050478/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050478/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27911,27912,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35492942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xu</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Wang, Kefeng</creatorcontrib><creatorcontrib>Xiao, Guoqing</creatorcontrib><creatorcontrib>Xu, Maotian</creatorcontrib><title>Graphene reinforced carbon nanofiber engineering enhances Li storage performances of germanium oxide</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>The rational design of electrode materials with high power and energy densities, good operational safety, and long cycle life remains a great challenge for developing advanced battery systems. As a promising electrode material for rechargeable batteries, germanium oxide (GeO 2 ) shows high capacity, but suffers from rapid capacity fading caused by its large volume variation during charge/discharge processes and poor rate performance owing to low intrinsic electronic conductivity. In this study, a novel one-dimensional (1D) carbon/graphene-nanocable-GeO 2 nanocomposite (denoted as GeO 2 /nanocable) is rationally designed and prepared via a facile electrospinning method. Specifically, amorphous carbon and graphene spontaneously construct a nanocable structure, in which graphene acts as the "core" and amorphous carbon as the "shell", and GeO 2 nanoparticles are encapsulated in the nanocable. The graphene "core" promises good electrical conductivity while the amorphous carbon "shell" guarantees fast Li ions diffusion. When tested as an anode material for rechargeable lithium ion batteries, the GeO 2 /nanocable exhibits remarkable Li storage performance, including high reversible capacity (900 mA h g −1 ), high capacity retention (91% after 100 cycles), and good rate performance (595 mA h g −1 at 5000 mA g −1 ). In the GeO 2 /nanocable, amorphous carbon and graphene spontaneously construct a nanocable structure, graphene "core" promises the good electrical conductivity while the amorphous carbon "shell" guarantees the fast Li ions diffusion.</description><subject>Anodes</subject><subject>Batteries</subject><subject>Carbon</subject><subject>Carbon fibers</subject><subject>Chemistry</subject><subject>Diffusion rate</subject><subject>Electrical resistivity</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Germanium</subject><subject>Germanium oxides</subject><subject>Graphene</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Nanocomposites</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Rechargeable batteries</subject><subject>Storage batteries</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kk2LFDEQhoMo7rLuxbsS8SLCaOWjvy7CsuqqDAii55CuVPdkmE7aZFr035t11nH1YC5VqXrqpcIbxh4KeCFAdS8dJAvQSNjeYacSdL2SUHd3b-Un7DznLZRTV0LW4j47UZXuZKflKXNXyc4bCsQT-TDEhOQ42tTHwIMNcfA9JU5h9IEo-TCWfGMDUuZrz_M-JjsSnymV0elQjwMf6fril4nH797RA3ZvsLtM5zfxjH15--bz5bvV-uPV-8uL9Qp1pfcrwl4rVDS0ggCdaBtAtL3Gqq571aBo2wFRa4GtJLLgeillL1XnRCMckTpjrw6689JP5JDCPtmdmZOfbPphovXm707wGzPGb6aDCnTTFoFnNwIpfl0o783kM9JuZwPFJRtZV22ttYKqoE__QbdxSaE8z0jVNG0nK6kK9fxAYYo5JxqOywgw1_6Z1_Dp4pd_Hwr8-Pb6R_S3WwV4cgBSxmP3zwcwsxsK8-h_jPoJC6Wtcw</recordid><startdate>20200317</startdate><enddate>20200317</enddate><creator>Zhang, Xu</creator><creator>Wei, Wei</creator><creator>Wang, Kefeng</creator><creator>Xiao, Guoqing</creator><creator>Xu, Maotian</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7211-116X</orcidid><orcidid>https://orcid.org/0000-0003-0231-4591</orcidid><orcidid>https://orcid.org/0000-0002-8435-5313</orcidid></search><sort><creationdate>20200317</creationdate><title>Graphene reinforced carbon nanofiber engineering enhances Li storage performances of germanium oxide</title><author>Zhang, Xu ; Wei, Wei ; Wang, Kefeng ; Xiao, Guoqing ; Xu, Maotian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-ecb43c3ef81e0cd1870ccab4c566b37c188fcc441c82eea0db222b239d171dee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>Batteries</topic><topic>Carbon</topic><topic>Carbon fibers</topic><topic>Chemistry</topic><topic>Diffusion rate</topic><topic>Electrical resistivity</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Germanium</topic><topic>Germanium oxides</topic><topic>Graphene</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Nanocomposites</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Rechargeable batteries</topic><topic>Storage batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xu</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Wang, Kefeng</creatorcontrib><creatorcontrib>Xiao, Guoqing</creatorcontrib><creatorcontrib>Xu, Maotian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xu</au><au>Wei, Wei</au><au>Wang, Kefeng</au><au>Xiao, Guoqing</au><au>Xu, Maotian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene reinforced carbon nanofiber engineering enhances Li storage performances of germanium oxide</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2020-03-17</date><risdate>2020</risdate><volume>1</volume><issue>18</issue><spage>1873</spage><epage>1878</epage><pages>1873-1878</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>The rational design of electrode materials with high power and energy densities, good operational safety, and long cycle life remains a great challenge for developing advanced battery systems. As a promising electrode material for rechargeable batteries, germanium oxide (GeO 2 ) shows high capacity, but suffers from rapid capacity fading caused by its large volume variation during charge/discharge processes and poor rate performance owing to low intrinsic electronic conductivity. In this study, a novel one-dimensional (1D) carbon/graphene-nanocable-GeO 2 nanocomposite (denoted as GeO 2 /nanocable) is rationally designed and prepared via a facile electrospinning method. Specifically, amorphous carbon and graphene spontaneously construct a nanocable structure, in which graphene acts as the "core" and amorphous carbon as the "shell", and GeO 2 nanoparticles are encapsulated in the nanocable. The graphene "core" promises good electrical conductivity while the amorphous carbon "shell" guarantees fast Li ions diffusion. When tested as an anode material for rechargeable lithium ion batteries, the GeO 2 /nanocable exhibits remarkable Li storage performance, including high reversible capacity (900 mA h g −1 ), high capacity retention (91% after 100 cycles), and good rate performance (595 mA h g −1 at 5000 mA g −1 ). In the GeO 2 /nanocable, amorphous carbon and graphene spontaneously construct a nanocable structure, graphene "core" promises the good electrical conductivity while the amorphous carbon "shell" guarantees the fast Li ions diffusion.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35492942</pmid><doi>10.1039/d0ra00720j</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7211-116X</orcidid><orcidid>https://orcid.org/0000-0003-0231-4591</orcidid><orcidid>https://orcid.org/0000-0002-8435-5313</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2020-03, Vol.1 (18), p.1873-1878
issn 2046-2069
2046-2069
language eng
recordid cdi_proquest_miscellaneous_2658644305
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central
subjects Anodes
Batteries
Carbon
Carbon fibers
Chemistry
Diffusion rate
Electrical resistivity
Electrode materials
Electrodes
Germanium
Germanium oxides
Graphene
Lithium
Lithium-ion batteries
Nanocomposites
Nanofibers
Nanoparticles
Rechargeable batteries
Storage batteries
title Graphene reinforced carbon nanofiber engineering enhances Li storage performances of germanium oxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A37%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20reinforced%20carbon%20nanofiber%20engineering%20enhances%20Li%20storage%20performances%20of%20germanium%20oxide&rft.jtitle=RSC%20advances&rft.au=Zhang,%20Xu&rft.date=2020-03-17&rft.volume=1&rft.issue=18&rft.spage=1873&rft.epage=1878&rft.pages=1873-1878&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d0ra00720j&rft_dat=%3Cproquest_pubme%3E2658644305%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377892523&rft_id=info:pmid/35492942&rfr_iscdi=true