Graphene reinforced carbon nanofiber engineering enhances Li storage performances of germanium oxide
The rational design of electrode materials with high power and energy densities, good operational safety, and long cycle life remains a great challenge for developing advanced battery systems. As a promising electrode material for rechargeable batteries, germanium oxide (GeO 2 ) shows high capacity,...
Gespeichert in:
Veröffentlicht in: | RSC advances 2020-03, Vol.1 (18), p.1873-1878 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1878 |
---|---|
container_issue | 18 |
container_start_page | 1873 |
container_title | RSC advances |
container_volume | 1 |
creator | Zhang, Xu Wei, Wei Wang, Kefeng Xiao, Guoqing Xu, Maotian |
description | The rational design of electrode materials with high power and energy densities, good operational safety, and long cycle life remains a great challenge for developing advanced battery systems. As a promising electrode material for rechargeable batteries, germanium oxide (GeO
2
) shows high capacity, but suffers from rapid capacity fading caused by its large volume variation during charge/discharge processes and poor rate performance owing to low intrinsic electronic conductivity. In this study, a novel one-dimensional (1D) carbon/graphene-nanocable-GeO
2
nanocomposite (denoted as GeO
2
/nanocable) is rationally designed and prepared
via
a facile electrospinning method. Specifically, amorphous carbon and graphene spontaneously construct a nanocable structure, in which graphene acts as the "core" and amorphous carbon as the "shell", and GeO
2
nanoparticles are encapsulated in the nanocable. The graphene "core" promises good electrical conductivity while the amorphous carbon "shell" guarantees fast Li ions diffusion. When tested as an anode material for rechargeable lithium ion batteries, the GeO
2
/nanocable exhibits remarkable Li storage performance, including high reversible capacity (900 mA h g
−1
), high capacity retention (91% after 100 cycles), and good rate performance (595 mA h g
−1
at 5000 mA g
−1
).
In the GeO
2
/nanocable, amorphous carbon and graphene spontaneously construct a nanocable structure, graphene "core" promises the good electrical conductivity while the amorphous carbon "shell" guarantees the fast Li ions diffusion. |
doi_str_mv | 10.1039/d0ra00720j |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2658644305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658644305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-ecb43c3ef81e0cd1870ccab4c566b37c188fcc441c82eea0db222b239d171dee3</originalsourceid><addsrcrecordid>eNp9kk2LFDEQhoMo7rLuxbsS8SLCaOWjvy7CsuqqDAii55CuVPdkmE7aZFr035t11nH1YC5VqXrqpcIbxh4KeCFAdS8dJAvQSNjeYacSdL2SUHd3b-Un7DznLZRTV0LW4j47UZXuZKflKXNXyc4bCsQT-TDEhOQ42tTHwIMNcfA9JU5h9IEo-TCWfGMDUuZrz_M-JjsSnymV0elQjwMf6fril4nH797RA3ZvsLtM5zfxjH15--bz5bvV-uPV-8uL9Qp1pfcrwl4rVDS0ggCdaBtAtL3Gqq571aBo2wFRa4GtJLLgeillL1XnRCMckTpjrw6689JP5JDCPtmdmZOfbPphovXm707wGzPGb6aDCnTTFoFnNwIpfl0o783kM9JuZwPFJRtZV22ttYKqoE__QbdxSaE8z0jVNG0nK6kK9fxAYYo5JxqOywgw1_6Z1_Dp4pd_Hwr8-Pb6R_S3WwV4cgBSxmP3zwcwsxsK8-h_jPoJC6Wtcw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377892523</pqid></control><display><type>article</type><title>Graphene reinforced carbon nanofiber engineering enhances Li storage performances of germanium oxide</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Zhang, Xu ; Wei, Wei ; Wang, Kefeng ; Xiao, Guoqing ; Xu, Maotian</creator><creatorcontrib>Zhang, Xu ; Wei, Wei ; Wang, Kefeng ; Xiao, Guoqing ; Xu, Maotian</creatorcontrib><description>The rational design of electrode materials with high power and energy densities, good operational safety, and long cycle life remains a great challenge for developing advanced battery systems. As a promising electrode material for rechargeable batteries, germanium oxide (GeO
2
) shows high capacity, but suffers from rapid capacity fading caused by its large volume variation during charge/discharge processes and poor rate performance owing to low intrinsic electronic conductivity. In this study, a novel one-dimensional (1D) carbon/graphene-nanocable-GeO
2
nanocomposite (denoted as GeO
2
/nanocable) is rationally designed and prepared
via
a facile electrospinning method. Specifically, amorphous carbon and graphene spontaneously construct a nanocable structure, in which graphene acts as the "core" and amorphous carbon as the "shell", and GeO
2
nanoparticles are encapsulated in the nanocable. The graphene "core" promises good electrical conductivity while the amorphous carbon "shell" guarantees fast Li ions diffusion. When tested as an anode material for rechargeable lithium ion batteries, the GeO
2
/nanocable exhibits remarkable Li storage performance, including high reversible capacity (900 mA h g
−1
), high capacity retention (91% after 100 cycles), and good rate performance (595 mA h g
−1
at 5000 mA g
−1
).
In the GeO
2
/nanocable, amorphous carbon and graphene spontaneously construct a nanocable structure, graphene "core" promises the good electrical conductivity while the amorphous carbon "shell" guarantees the fast Li ions diffusion.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d0ra00720j</identifier><identifier>PMID: 35492942</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Anodes ; Batteries ; Carbon ; Carbon fibers ; Chemistry ; Diffusion rate ; Electrical resistivity ; Electrode materials ; Electrodes ; Germanium ; Germanium oxides ; Graphene ; Lithium ; Lithium-ion batteries ; Nanocomposites ; Nanofibers ; Nanoparticles ; Rechargeable batteries ; Storage batteries</subject><ispartof>RSC advances, 2020-03, Vol.1 (18), p.1873-1878</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-ecb43c3ef81e0cd1870ccab4c566b37c188fcc441c82eea0db222b239d171dee3</citedby><cites>FETCH-LOGICAL-c454t-ecb43c3ef81e0cd1870ccab4c566b37c188fcc441c82eea0db222b239d171dee3</cites><orcidid>0000-0002-7211-116X ; 0000-0003-0231-4591 ; 0000-0002-8435-5313</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050478/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9050478/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27911,27912,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35492942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xu</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Wang, Kefeng</creatorcontrib><creatorcontrib>Xiao, Guoqing</creatorcontrib><creatorcontrib>Xu, Maotian</creatorcontrib><title>Graphene reinforced carbon nanofiber engineering enhances Li storage performances of germanium oxide</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>The rational design of electrode materials with high power and energy densities, good operational safety, and long cycle life remains a great challenge for developing advanced battery systems. As a promising electrode material for rechargeable batteries, germanium oxide (GeO
2
) shows high capacity, but suffers from rapid capacity fading caused by its large volume variation during charge/discharge processes and poor rate performance owing to low intrinsic electronic conductivity. In this study, a novel one-dimensional (1D) carbon/graphene-nanocable-GeO
2
nanocomposite (denoted as GeO
2
/nanocable) is rationally designed and prepared
via
a facile electrospinning method. Specifically, amorphous carbon and graphene spontaneously construct a nanocable structure, in which graphene acts as the "core" and amorphous carbon as the "shell", and GeO
2
nanoparticles are encapsulated in the nanocable. The graphene "core" promises good electrical conductivity while the amorphous carbon "shell" guarantees fast Li ions diffusion. When tested as an anode material for rechargeable lithium ion batteries, the GeO
2
/nanocable exhibits remarkable Li storage performance, including high reversible capacity (900 mA h g
−1
), high capacity retention (91% after 100 cycles), and good rate performance (595 mA h g
−1
at 5000 mA g
−1
).
In the GeO
2
/nanocable, amorphous carbon and graphene spontaneously construct a nanocable structure, graphene "core" promises the good electrical conductivity while the amorphous carbon "shell" guarantees the fast Li ions diffusion.</description><subject>Anodes</subject><subject>Batteries</subject><subject>Carbon</subject><subject>Carbon fibers</subject><subject>Chemistry</subject><subject>Diffusion rate</subject><subject>Electrical resistivity</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Germanium</subject><subject>Germanium oxides</subject><subject>Graphene</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Nanocomposites</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Rechargeable batteries</subject><subject>Storage batteries</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kk2LFDEQhoMo7rLuxbsS8SLCaOWjvy7CsuqqDAii55CuVPdkmE7aZFr035t11nH1YC5VqXrqpcIbxh4KeCFAdS8dJAvQSNjeYacSdL2SUHd3b-Un7DznLZRTV0LW4j47UZXuZKflKXNXyc4bCsQT-TDEhOQ42tTHwIMNcfA9JU5h9IEo-TCWfGMDUuZrz_M-JjsSnymV0elQjwMf6fril4nH797RA3ZvsLtM5zfxjH15--bz5bvV-uPV-8uL9Qp1pfcrwl4rVDS0ggCdaBtAtL3Gqq571aBo2wFRa4GtJLLgeillL1XnRCMckTpjrw6689JP5JDCPtmdmZOfbPphovXm707wGzPGb6aDCnTTFoFnNwIpfl0o783kM9JuZwPFJRtZV22ttYKqoE__QbdxSaE8z0jVNG0nK6kK9fxAYYo5JxqOywgw1_6Z1_Dp4pd_Hwr8-Pb6R_S3WwV4cgBSxmP3zwcwsxsK8-h_jPoJC6Wtcw</recordid><startdate>20200317</startdate><enddate>20200317</enddate><creator>Zhang, Xu</creator><creator>Wei, Wei</creator><creator>Wang, Kefeng</creator><creator>Xiao, Guoqing</creator><creator>Xu, Maotian</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7211-116X</orcidid><orcidid>https://orcid.org/0000-0003-0231-4591</orcidid><orcidid>https://orcid.org/0000-0002-8435-5313</orcidid></search><sort><creationdate>20200317</creationdate><title>Graphene reinforced carbon nanofiber engineering enhances Li storage performances of germanium oxide</title><author>Zhang, Xu ; Wei, Wei ; Wang, Kefeng ; Xiao, Guoqing ; Xu, Maotian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-ecb43c3ef81e0cd1870ccab4c566b37c188fcc441c82eea0db222b239d171dee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>Batteries</topic><topic>Carbon</topic><topic>Carbon fibers</topic><topic>Chemistry</topic><topic>Diffusion rate</topic><topic>Electrical resistivity</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Germanium</topic><topic>Germanium oxides</topic><topic>Graphene</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Nanocomposites</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Rechargeable batteries</topic><topic>Storage batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xu</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Wang, Kefeng</creatorcontrib><creatorcontrib>Xiao, Guoqing</creatorcontrib><creatorcontrib>Xu, Maotian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xu</au><au>Wei, Wei</au><au>Wang, Kefeng</au><au>Xiao, Guoqing</au><au>Xu, Maotian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene reinforced carbon nanofiber engineering enhances Li storage performances of germanium oxide</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2020-03-17</date><risdate>2020</risdate><volume>1</volume><issue>18</issue><spage>1873</spage><epage>1878</epage><pages>1873-1878</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>The rational design of electrode materials with high power and energy densities, good operational safety, and long cycle life remains a great challenge for developing advanced battery systems. As a promising electrode material for rechargeable batteries, germanium oxide (GeO
2
) shows high capacity, but suffers from rapid capacity fading caused by its large volume variation during charge/discharge processes and poor rate performance owing to low intrinsic electronic conductivity. In this study, a novel one-dimensional (1D) carbon/graphene-nanocable-GeO
2
nanocomposite (denoted as GeO
2
/nanocable) is rationally designed and prepared
via
a facile electrospinning method. Specifically, amorphous carbon and graphene spontaneously construct a nanocable structure, in which graphene acts as the "core" and amorphous carbon as the "shell", and GeO
2
nanoparticles are encapsulated in the nanocable. The graphene "core" promises good electrical conductivity while the amorphous carbon "shell" guarantees fast Li ions diffusion. When tested as an anode material for rechargeable lithium ion batteries, the GeO
2
/nanocable exhibits remarkable Li storage performance, including high reversible capacity (900 mA h g
−1
), high capacity retention (91% after 100 cycles), and good rate performance (595 mA h g
−1
at 5000 mA g
−1
).
In the GeO
2
/nanocable, amorphous carbon and graphene spontaneously construct a nanocable structure, graphene "core" promises the good electrical conductivity while the amorphous carbon "shell" guarantees the fast Li ions diffusion.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35492942</pmid><doi>10.1039/d0ra00720j</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7211-116X</orcidid><orcidid>https://orcid.org/0000-0003-0231-4591</orcidid><orcidid>https://orcid.org/0000-0002-8435-5313</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2020-03, Vol.1 (18), p.1873-1878 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_proquest_miscellaneous_2658644305 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central |
subjects | Anodes Batteries Carbon Carbon fibers Chemistry Diffusion rate Electrical resistivity Electrode materials Electrodes Germanium Germanium oxides Graphene Lithium Lithium-ion batteries Nanocomposites Nanofibers Nanoparticles Rechargeable batteries Storage batteries |
title | Graphene reinforced carbon nanofiber engineering enhances Li storage performances of germanium oxide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A37%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20reinforced%20carbon%20nanofiber%20engineering%20enhances%20Li%20storage%20performances%20of%20germanium%20oxide&rft.jtitle=RSC%20advances&rft.au=Zhang,%20Xu&rft.date=2020-03-17&rft.volume=1&rft.issue=18&rft.spage=1873&rft.epage=1878&rft.pages=1873-1878&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d0ra00720j&rft_dat=%3Cproquest_pubme%3E2658644305%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377892523&rft_id=info:pmid/35492942&rfr_iscdi=true |