Entanglement from Tensor Networks on a Trapped-Ion Quantum Computer

The ability to selectively measure, initialize, and reuse qubits during a quantum circuit enables a mapping of the spatial structure of certain tensor-network states onto the dynamics of quantum circuits, thereby achieving dramatic resource savings when simulating quantum systems with limited entang...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2022-04, Vol.128 (15), p.150504-150504, Article 150504
Hauptverfasser: Foss-Feig, Michael, Ragole, Stephen, Potter, Andrew, Dreiling, Joan, Figgatt, Caroline, Gaebler, John, Hall, Alex, Moses, Steven, Pino, Juan, Spaun, Ben, Neyenhuis, Brian, Hayes, David
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150504
container_issue 15
container_start_page 150504
container_title Physical review letters
container_volume 128
creator Foss-Feig, Michael
Ragole, Stephen
Potter, Andrew
Dreiling, Joan
Figgatt, Caroline
Gaebler, John
Hall, Alex
Moses, Steven
Pino, Juan
Spaun, Ben
Neyenhuis, Brian
Hayes, David
description The ability to selectively measure, initialize, and reuse qubits during a quantum circuit enables a mapping of the spatial structure of certain tensor-network states onto the dynamics of quantum circuits, thereby achieving dramatic resource savings when simulating quantum systems with limited entanglement. We experimentally demonstrate a significant benefit of this approach to quantum simulation: the entanglement structure of an infinite system-specifically the half-chain entanglement spectrum-is conveniently encoded within a small register of "bond qubits" and can be extracted with relative ease. Using Honeywell's model H0 quantum computer equipped with selective midcircuit measurement and reset, we quantitatively determine the near-critical entanglement entropy of a correlated spin chain directly in the thermodynamic limit and show that its phase transition becomes quickly resolved upon expanding the bond-qubit register.
doi_str_mv 10.1103/PhysRevLett.128.150504
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2658641927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658641927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-89076e6d99f8c7b0b6becca48b118315a6efe92c9fbe0245972e75db4873298d3</originalsourceid><addsrcrecordid>eNpN0NtKw0AQBuBFFFurr1By6U3q7CbZw6UED4XiiXq9bJKJVpNs3N0ofXsjreLVMPD_M_ARMqewoBSSi4fXrX_CzxWGsKBMLmgGGaQHZEpBqFhQmh6SKUBCYwUgJuTE-zcAoIzLYzJJslQpKemU5FddMN1Lgy12IaqdbaM1dt666A7Dl3XvPrJdZKK1M32PVbwct8fBdGFoo9y2_RDQnZKj2jQez_ZzRp6vr9b5bby6v1nml6u4ZIyHWCoQHHmlVC1LUUDBCyxLk8qCUpnQzHCsUbFS1QUCSzMlGIqsKlIpEqZklczI-e5u7-zHgD7oduNLbBrToR28ZjyTPKWKiTHKd9HSWe8d1rp3m9a4raagfwD1P0A9Auod4Fic738MRYvVX-1XLPkGah9vMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2658641927</pqid></control><display><type>article</type><title>Entanglement from Tensor Networks on a Trapped-Ion Quantum Computer</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Foss-Feig, Michael ; Ragole, Stephen ; Potter, Andrew ; Dreiling, Joan ; Figgatt, Caroline ; Gaebler, John ; Hall, Alex ; Moses, Steven ; Pino, Juan ; Spaun, Ben ; Neyenhuis, Brian ; Hayes, David</creator><creatorcontrib>Foss-Feig, Michael ; Ragole, Stephen ; Potter, Andrew ; Dreiling, Joan ; Figgatt, Caroline ; Gaebler, John ; Hall, Alex ; Moses, Steven ; Pino, Juan ; Spaun, Ben ; Neyenhuis, Brian ; Hayes, David</creatorcontrib><description>The ability to selectively measure, initialize, and reuse qubits during a quantum circuit enables a mapping of the spatial structure of certain tensor-network states onto the dynamics of quantum circuits, thereby achieving dramatic resource savings when simulating quantum systems with limited entanglement. We experimentally demonstrate a significant benefit of this approach to quantum simulation: the entanglement structure of an infinite system-specifically the half-chain entanglement spectrum-is conveniently encoded within a small register of "bond qubits" and can be extracted with relative ease. Using Honeywell's model H0 quantum computer equipped with selective midcircuit measurement and reset, we quantitatively determine the near-critical entanglement entropy of a correlated spin chain directly in the thermodynamic limit and show that its phase transition becomes quickly resolved upon expanding the bond-qubit register.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.128.150504</identifier><identifier>PMID: 35499881</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2022-04, Vol.128 (15), p.150504-150504, Article 150504</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c226t-89076e6d99f8c7b0b6becca48b118315a6efe92c9fbe0245972e75db4873298d3</citedby><cites>FETCH-LOGICAL-c226t-89076e6d99f8c7b0b6becca48b118315a6efe92c9fbe0245972e75db4873298d3</cites><orcidid>0000-0002-7429-0157 ; 0000-0001-8460-4175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35499881$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Foss-Feig, Michael</creatorcontrib><creatorcontrib>Ragole, Stephen</creatorcontrib><creatorcontrib>Potter, Andrew</creatorcontrib><creatorcontrib>Dreiling, Joan</creatorcontrib><creatorcontrib>Figgatt, Caroline</creatorcontrib><creatorcontrib>Gaebler, John</creatorcontrib><creatorcontrib>Hall, Alex</creatorcontrib><creatorcontrib>Moses, Steven</creatorcontrib><creatorcontrib>Pino, Juan</creatorcontrib><creatorcontrib>Spaun, Ben</creatorcontrib><creatorcontrib>Neyenhuis, Brian</creatorcontrib><creatorcontrib>Hayes, David</creatorcontrib><title>Entanglement from Tensor Networks on a Trapped-Ion Quantum Computer</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The ability to selectively measure, initialize, and reuse qubits during a quantum circuit enables a mapping of the spatial structure of certain tensor-network states onto the dynamics of quantum circuits, thereby achieving dramatic resource savings when simulating quantum systems with limited entanglement. We experimentally demonstrate a significant benefit of this approach to quantum simulation: the entanglement structure of an infinite system-specifically the half-chain entanglement spectrum-is conveniently encoded within a small register of "bond qubits" and can be extracted with relative ease. Using Honeywell's model H0 quantum computer equipped with selective midcircuit measurement and reset, we quantitatively determine the near-critical entanglement entropy of a correlated spin chain directly in the thermodynamic limit and show that its phase transition becomes quickly resolved upon expanding the bond-qubit register.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpN0NtKw0AQBuBFFFurr1By6U3q7CbZw6UED4XiiXq9bJKJVpNs3N0ofXsjreLVMPD_M_ARMqewoBSSi4fXrX_CzxWGsKBMLmgGGaQHZEpBqFhQmh6SKUBCYwUgJuTE-zcAoIzLYzJJslQpKemU5FddMN1Lgy12IaqdbaM1dt666A7Dl3XvPrJdZKK1M32PVbwct8fBdGFoo9y2_RDQnZKj2jQez_ZzRp6vr9b5bby6v1nml6u4ZIyHWCoQHHmlVC1LUUDBCyxLk8qCUpnQzHCsUbFS1QUCSzMlGIqsKlIpEqZklczI-e5u7-zHgD7oduNLbBrToR28ZjyTPKWKiTHKd9HSWe8d1rp3m9a4raagfwD1P0A9Auod4Fic738MRYvVX-1XLPkGah9vMA</recordid><startdate>20220415</startdate><enddate>20220415</enddate><creator>Foss-Feig, Michael</creator><creator>Ragole, Stephen</creator><creator>Potter, Andrew</creator><creator>Dreiling, Joan</creator><creator>Figgatt, Caroline</creator><creator>Gaebler, John</creator><creator>Hall, Alex</creator><creator>Moses, Steven</creator><creator>Pino, Juan</creator><creator>Spaun, Ben</creator><creator>Neyenhuis, Brian</creator><creator>Hayes, David</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7429-0157</orcidid><orcidid>https://orcid.org/0000-0001-8460-4175</orcidid></search><sort><creationdate>20220415</creationdate><title>Entanglement from Tensor Networks on a Trapped-Ion Quantum Computer</title><author>Foss-Feig, Michael ; Ragole, Stephen ; Potter, Andrew ; Dreiling, Joan ; Figgatt, Caroline ; Gaebler, John ; Hall, Alex ; Moses, Steven ; Pino, Juan ; Spaun, Ben ; Neyenhuis, Brian ; Hayes, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-89076e6d99f8c7b0b6becca48b118315a6efe92c9fbe0245972e75db4873298d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foss-Feig, Michael</creatorcontrib><creatorcontrib>Ragole, Stephen</creatorcontrib><creatorcontrib>Potter, Andrew</creatorcontrib><creatorcontrib>Dreiling, Joan</creatorcontrib><creatorcontrib>Figgatt, Caroline</creatorcontrib><creatorcontrib>Gaebler, John</creatorcontrib><creatorcontrib>Hall, Alex</creatorcontrib><creatorcontrib>Moses, Steven</creatorcontrib><creatorcontrib>Pino, Juan</creatorcontrib><creatorcontrib>Spaun, Ben</creatorcontrib><creatorcontrib>Neyenhuis, Brian</creatorcontrib><creatorcontrib>Hayes, David</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foss-Feig, Michael</au><au>Ragole, Stephen</au><au>Potter, Andrew</au><au>Dreiling, Joan</au><au>Figgatt, Caroline</au><au>Gaebler, John</au><au>Hall, Alex</au><au>Moses, Steven</au><au>Pino, Juan</au><au>Spaun, Ben</au><au>Neyenhuis, Brian</au><au>Hayes, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entanglement from Tensor Networks on a Trapped-Ion Quantum Computer</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2022-04-15</date><risdate>2022</risdate><volume>128</volume><issue>15</issue><spage>150504</spage><epage>150504</epage><pages>150504-150504</pages><artnum>150504</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The ability to selectively measure, initialize, and reuse qubits during a quantum circuit enables a mapping of the spatial structure of certain tensor-network states onto the dynamics of quantum circuits, thereby achieving dramatic resource savings when simulating quantum systems with limited entanglement. We experimentally demonstrate a significant benefit of this approach to quantum simulation: the entanglement structure of an infinite system-specifically the half-chain entanglement spectrum-is conveniently encoded within a small register of "bond qubits" and can be extracted with relative ease. Using Honeywell's model H0 quantum computer equipped with selective midcircuit measurement and reset, we quantitatively determine the near-critical entanglement entropy of a correlated spin chain directly in the thermodynamic limit and show that its phase transition becomes quickly resolved upon expanding the bond-qubit register.</abstract><cop>United States</cop><pmid>35499881</pmid><doi>10.1103/PhysRevLett.128.150504</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7429-0157</orcidid><orcidid>https://orcid.org/0000-0001-8460-4175</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2022-04, Vol.128 (15), p.150504-150504, Article 150504
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2658641927
source American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Entanglement from Tensor Networks on a Trapped-Ion Quantum Computer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entanglement%20from%20Tensor%20Networks%20on%20a%20Trapped-Ion%20Quantum%20Computer&rft.jtitle=Physical%20review%20letters&rft.au=Foss-Feig,%20Michael&rft.date=2022-04-15&rft.volume=128&rft.issue=15&rft.spage=150504&rft.epage=150504&rft.pages=150504-150504&rft.artnum=150504&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.128.150504&rft_dat=%3Cproquest_cross%3E2658641927%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2658641927&rft_id=info:pmid/35499881&rfr_iscdi=true