Entanglement from Tensor Networks on a Trapped-Ion Quantum Computer
The ability to selectively measure, initialize, and reuse qubits during a quantum circuit enables a mapping of the spatial structure of certain tensor-network states onto the dynamics of quantum circuits, thereby achieving dramatic resource savings when simulating quantum systems with limited entang...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2022-04, Vol.128 (15), p.150504-150504, Article 150504 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 150504 |
---|---|
container_issue | 15 |
container_start_page | 150504 |
container_title | Physical review letters |
container_volume | 128 |
creator | Foss-Feig, Michael Ragole, Stephen Potter, Andrew Dreiling, Joan Figgatt, Caroline Gaebler, John Hall, Alex Moses, Steven Pino, Juan Spaun, Ben Neyenhuis, Brian Hayes, David |
description | The ability to selectively measure, initialize, and reuse qubits during a quantum circuit enables a mapping of the spatial structure of certain tensor-network states onto the dynamics of quantum circuits, thereby achieving dramatic resource savings when simulating quantum systems with limited entanglement. We experimentally demonstrate a significant benefit of this approach to quantum simulation: the entanglement structure of an infinite system-specifically the half-chain entanglement spectrum-is conveniently encoded within a small register of "bond qubits" and can be extracted with relative ease. Using Honeywell's model H0 quantum computer equipped with selective midcircuit measurement and reset, we quantitatively determine the near-critical entanglement entropy of a correlated spin chain directly in the thermodynamic limit and show that its phase transition becomes quickly resolved upon expanding the bond-qubit register. |
doi_str_mv | 10.1103/PhysRevLett.128.150504 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2658641927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658641927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-89076e6d99f8c7b0b6becca48b118315a6efe92c9fbe0245972e75db4873298d3</originalsourceid><addsrcrecordid>eNpN0NtKw0AQBuBFFFurr1By6U3q7CbZw6UED4XiiXq9bJKJVpNs3N0ofXsjreLVMPD_M_ARMqewoBSSi4fXrX_CzxWGsKBMLmgGGaQHZEpBqFhQmh6SKUBCYwUgJuTE-zcAoIzLYzJJslQpKemU5FddMN1Lgy12IaqdbaM1dt666A7Dl3XvPrJdZKK1M32PVbwct8fBdGFoo9y2_RDQnZKj2jQez_ZzRp6vr9b5bby6v1nml6u4ZIyHWCoQHHmlVC1LUUDBCyxLk8qCUpnQzHCsUbFS1QUCSzMlGIqsKlIpEqZklczI-e5u7-zHgD7oduNLbBrToR28ZjyTPKWKiTHKd9HSWe8d1rp3m9a4raagfwD1P0A9Auod4Fic738MRYvVX-1XLPkGah9vMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2658641927</pqid></control><display><type>article</type><title>Entanglement from Tensor Networks on a Trapped-Ion Quantum Computer</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Foss-Feig, Michael ; Ragole, Stephen ; Potter, Andrew ; Dreiling, Joan ; Figgatt, Caroline ; Gaebler, John ; Hall, Alex ; Moses, Steven ; Pino, Juan ; Spaun, Ben ; Neyenhuis, Brian ; Hayes, David</creator><creatorcontrib>Foss-Feig, Michael ; Ragole, Stephen ; Potter, Andrew ; Dreiling, Joan ; Figgatt, Caroline ; Gaebler, John ; Hall, Alex ; Moses, Steven ; Pino, Juan ; Spaun, Ben ; Neyenhuis, Brian ; Hayes, David</creatorcontrib><description>The ability to selectively measure, initialize, and reuse qubits during a quantum circuit enables a mapping of the spatial structure of certain tensor-network states onto the dynamics of quantum circuits, thereby achieving dramatic resource savings when simulating quantum systems with limited entanglement. We experimentally demonstrate a significant benefit of this approach to quantum simulation: the entanglement structure of an infinite system-specifically the half-chain entanglement spectrum-is conveniently encoded within a small register of "bond qubits" and can be extracted with relative ease. Using Honeywell's model H0 quantum computer equipped with selective midcircuit measurement and reset, we quantitatively determine the near-critical entanglement entropy of a correlated spin chain directly in the thermodynamic limit and show that its phase transition becomes quickly resolved upon expanding the bond-qubit register.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.128.150504</identifier><identifier>PMID: 35499881</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2022-04, Vol.128 (15), p.150504-150504, Article 150504</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c226t-89076e6d99f8c7b0b6becca48b118315a6efe92c9fbe0245972e75db4873298d3</citedby><cites>FETCH-LOGICAL-c226t-89076e6d99f8c7b0b6becca48b118315a6efe92c9fbe0245972e75db4873298d3</cites><orcidid>0000-0002-7429-0157 ; 0000-0001-8460-4175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35499881$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Foss-Feig, Michael</creatorcontrib><creatorcontrib>Ragole, Stephen</creatorcontrib><creatorcontrib>Potter, Andrew</creatorcontrib><creatorcontrib>Dreiling, Joan</creatorcontrib><creatorcontrib>Figgatt, Caroline</creatorcontrib><creatorcontrib>Gaebler, John</creatorcontrib><creatorcontrib>Hall, Alex</creatorcontrib><creatorcontrib>Moses, Steven</creatorcontrib><creatorcontrib>Pino, Juan</creatorcontrib><creatorcontrib>Spaun, Ben</creatorcontrib><creatorcontrib>Neyenhuis, Brian</creatorcontrib><creatorcontrib>Hayes, David</creatorcontrib><title>Entanglement from Tensor Networks on a Trapped-Ion Quantum Computer</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The ability to selectively measure, initialize, and reuse qubits during a quantum circuit enables a mapping of the spatial structure of certain tensor-network states onto the dynamics of quantum circuits, thereby achieving dramatic resource savings when simulating quantum systems with limited entanglement. We experimentally demonstrate a significant benefit of this approach to quantum simulation: the entanglement structure of an infinite system-specifically the half-chain entanglement spectrum-is conveniently encoded within a small register of "bond qubits" and can be extracted with relative ease. Using Honeywell's model H0 quantum computer equipped with selective midcircuit measurement and reset, we quantitatively determine the near-critical entanglement entropy of a correlated spin chain directly in the thermodynamic limit and show that its phase transition becomes quickly resolved upon expanding the bond-qubit register.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpN0NtKw0AQBuBFFFurr1By6U3q7CbZw6UED4XiiXq9bJKJVpNs3N0ofXsjreLVMPD_M_ARMqewoBSSi4fXrX_CzxWGsKBMLmgGGaQHZEpBqFhQmh6SKUBCYwUgJuTE-zcAoIzLYzJJslQpKemU5FddMN1Lgy12IaqdbaM1dt666A7Dl3XvPrJdZKK1M32PVbwct8fBdGFoo9y2_RDQnZKj2jQez_ZzRp6vr9b5bby6v1nml6u4ZIyHWCoQHHmlVC1LUUDBCyxLk8qCUpnQzHCsUbFS1QUCSzMlGIqsKlIpEqZklczI-e5u7-zHgD7oduNLbBrToR28ZjyTPKWKiTHKd9HSWe8d1rp3m9a4raagfwD1P0A9Auod4Fic738MRYvVX-1XLPkGah9vMA</recordid><startdate>20220415</startdate><enddate>20220415</enddate><creator>Foss-Feig, Michael</creator><creator>Ragole, Stephen</creator><creator>Potter, Andrew</creator><creator>Dreiling, Joan</creator><creator>Figgatt, Caroline</creator><creator>Gaebler, John</creator><creator>Hall, Alex</creator><creator>Moses, Steven</creator><creator>Pino, Juan</creator><creator>Spaun, Ben</creator><creator>Neyenhuis, Brian</creator><creator>Hayes, David</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7429-0157</orcidid><orcidid>https://orcid.org/0000-0001-8460-4175</orcidid></search><sort><creationdate>20220415</creationdate><title>Entanglement from Tensor Networks on a Trapped-Ion Quantum Computer</title><author>Foss-Feig, Michael ; Ragole, Stephen ; Potter, Andrew ; Dreiling, Joan ; Figgatt, Caroline ; Gaebler, John ; Hall, Alex ; Moses, Steven ; Pino, Juan ; Spaun, Ben ; Neyenhuis, Brian ; Hayes, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-89076e6d99f8c7b0b6becca48b118315a6efe92c9fbe0245972e75db4873298d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foss-Feig, Michael</creatorcontrib><creatorcontrib>Ragole, Stephen</creatorcontrib><creatorcontrib>Potter, Andrew</creatorcontrib><creatorcontrib>Dreiling, Joan</creatorcontrib><creatorcontrib>Figgatt, Caroline</creatorcontrib><creatorcontrib>Gaebler, John</creatorcontrib><creatorcontrib>Hall, Alex</creatorcontrib><creatorcontrib>Moses, Steven</creatorcontrib><creatorcontrib>Pino, Juan</creatorcontrib><creatorcontrib>Spaun, Ben</creatorcontrib><creatorcontrib>Neyenhuis, Brian</creatorcontrib><creatorcontrib>Hayes, David</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foss-Feig, Michael</au><au>Ragole, Stephen</au><au>Potter, Andrew</au><au>Dreiling, Joan</au><au>Figgatt, Caroline</au><au>Gaebler, John</au><au>Hall, Alex</au><au>Moses, Steven</au><au>Pino, Juan</au><au>Spaun, Ben</au><au>Neyenhuis, Brian</au><au>Hayes, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entanglement from Tensor Networks on a Trapped-Ion Quantum Computer</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2022-04-15</date><risdate>2022</risdate><volume>128</volume><issue>15</issue><spage>150504</spage><epage>150504</epage><pages>150504-150504</pages><artnum>150504</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The ability to selectively measure, initialize, and reuse qubits during a quantum circuit enables a mapping of the spatial structure of certain tensor-network states onto the dynamics of quantum circuits, thereby achieving dramatic resource savings when simulating quantum systems with limited entanglement. We experimentally demonstrate a significant benefit of this approach to quantum simulation: the entanglement structure of an infinite system-specifically the half-chain entanglement spectrum-is conveniently encoded within a small register of "bond qubits" and can be extracted with relative ease. Using Honeywell's model H0 quantum computer equipped with selective midcircuit measurement and reset, we quantitatively determine the near-critical entanglement entropy of a correlated spin chain directly in the thermodynamic limit and show that its phase transition becomes quickly resolved upon expanding the bond-qubit register.</abstract><cop>United States</cop><pmid>35499881</pmid><doi>10.1103/PhysRevLett.128.150504</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7429-0157</orcidid><orcidid>https://orcid.org/0000-0001-8460-4175</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2022-04, Vol.128 (15), p.150504-150504, Article 150504 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2658641927 |
source | American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Entanglement from Tensor Networks on a Trapped-Ion Quantum Computer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entanglement%20from%20Tensor%20Networks%20on%20a%20Trapped-Ion%20Quantum%20Computer&rft.jtitle=Physical%20review%20letters&rft.au=Foss-Feig,%20Michael&rft.date=2022-04-15&rft.volume=128&rft.issue=15&rft.spage=150504&rft.epage=150504&rft.pages=150504-150504&rft.artnum=150504&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.128.150504&rft_dat=%3Cproquest_cross%3E2658641927%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2658641927&rft_id=info:pmid/35499881&rfr_iscdi=true |