Studying Complex Evolution of Hyperelastic Materials under External Field Stimuli using Artificial Neural Networks with Spatiotemporal Features in a Small‐Scale Dataset
Deep‐learning (DL) methods, in consideration of their excellence in dealing with highly complex structure–performance relationships for materials, are expected to become a new design paradigm for breakthroughs in material performance. However, in most cases, it is impractical to collect massive‐scal...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2022-07, Vol.34 (26), p.e2200908-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 26 |
container_start_page | e2200908 |
container_title | Advanced materials (Weinheim) |
container_volume | 34 |
creator | Yu, Songlin Chai, Haiyang Xiong, Yuqi Kang, Ming Geng, Chengzhen Liu, Yu Chen, Yanqiu Zhang, Yaling Zhang, Qian Li, Changlin Wei, Hao Zhao, Yuhang Yu, Fengmei Lu, Ai |
description | Deep‐learning (DL) methods, in consideration of their excellence in dealing with highly complex structure–performance relationships for materials, are expected to become a new design paradigm for breakthroughs in material performance. However, in most cases, it is impractical to collect massive‐scale experimental data or open‐source theoretical databases to support training DL models with sufficient prediction accuracy. In a dataset consisting of 483 porous silicone rubber observations generated via ink‐writing additive manufacturing, this work demonstrates that constructing low‐dimensional, accurate descriptors is the prerequisite for obtaining high‐precision DL models based on small experimental datasets. On this basis, a unique convolutional bidirectional long short‐term memory model with spatiotemporal features extraction capability is designed, whose hierarchical learning mechanism further reduces the requirement for the amount of data by taking full advantage of data information. The proposed approach can be expected as a powerful tool for innovative material design on small experimental datasets, which can also be used to explore the evolutionary mechanisms of the structures and properties of materials under complex working conditions.
Nonlinear mechanical properties of hyperelastic materials can be viewed as responses of materials to external serial stimuli. A convolutional bidirectional long short‐term memory (CBLSTM) model with spatiotemporal features is used to capture the complex evolution of structures and properties of materials under external field stimuli and to design materials with excellent performance via taking full advantage of data information even in a small‐scale dataset. |
doi_str_mv | 10.1002/adma.202200908 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2658229406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2682643733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3738-9d58a58da1eb59cf88db9b3c12f81217c5bc78959cb7f7caa29af95e582154963</originalsourceid><addsrcrecordid>eNqFkc9u1DAQhy0EokvhyhFZ4sIli-PEiX1cbXcpUguHhXPkOBNwceLgP93ujUfoc_SxeBIcthSJC6fRaL75xvIPoZc5WeaE0LeyG-SSEkoJEYQ_Qouc0TwriWCP0YKIgmWiKvkJeub9FUlMRaqn6KRgJS9IXS3Q3S7E7qDHL3hth8nADd5cWxODtiO2PT4_TODASB-0wpcygNPSeBzHDhze3KR-lAZvNZgO74IeotE4-lm3ckH3WiUcf4Dofpewt-6bx3sdvuLdJNORAMNk5-EWZIgOPNYjlng3SGN-_rjdKWkAn8kgPYTn6EmfjsOL-3qKPm83n9bn2cXHd-_Xq4tMFXXBM9ExLhnvZA4tE6rnvGtFW6ic9jynea1Yq2ou0qit-1pJSYXsBQPGac5KURWn6M3ROzn7PYIPzaC9AmPkCDb6hlYJpaIkM_r6H_TKxvlLZorTqkwvKhK1PFLKWe8d9M3k9CDdoclJM6fYzCk2DymmhVf32tgO0D3gf2JLgDgCe23g8B9dszq7XP2V_wJAB601</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682643733</pqid></control><display><type>article</type><title>Studying Complex Evolution of Hyperelastic Materials under External Field Stimuli using Artificial Neural Networks with Spatiotemporal Features in a Small‐Scale Dataset</title><source>Access via Wiley Online Library</source><creator>Yu, Songlin ; Chai, Haiyang ; Xiong, Yuqi ; Kang, Ming ; Geng, Chengzhen ; Liu, Yu ; Chen, Yanqiu ; Zhang, Yaling ; Zhang, Qian ; Li, Changlin ; Wei, Hao ; Zhao, Yuhang ; Yu, Fengmei ; Lu, Ai</creator><creatorcontrib>Yu, Songlin ; Chai, Haiyang ; Xiong, Yuqi ; Kang, Ming ; Geng, Chengzhen ; Liu, Yu ; Chen, Yanqiu ; Zhang, Yaling ; Zhang, Qian ; Li, Changlin ; Wei, Hao ; Zhao, Yuhang ; Yu, Fengmei ; Lu, Ai</creatorcontrib><description>Deep‐learning (DL) methods, in consideration of their excellence in dealing with highly complex structure–performance relationships for materials, are expected to become a new design paradigm for breakthroughs in material performance. However, in most cases, it is impractical to collect massive‐scale experimental data or open‐source theoretical databases to support training DL models with sufficient prediction accuracy. In a dataset consisting of 483 porous silicone rubber observations generated via ink‐writing additive manufacturing, this work demonstrates that constructing low‐dimensional, accurate descriptors is the prerequisite for obtaining high‐precision DL models based on small experimental datasets. On this basis, a unique convolutional bidirectional long short‐term memory model with spatiotemporal features extraction capability is designed, whose hierarchical learning mechanism further reduces the requirement for the amount of data by taking full advantage of data information. The proposed approach can be expected as a powerful tool for innovative material design on small experimental datasets, which can also be used to explore the evolutionary mechanisms of the structures and properties of materials under complex working conditions.
Nonlinear mechanical properties of hyperelastic materials can be viewed as responses of materials to external serial stimuli. A convolutional bidirectional long short‐term memory (CBLSTM) model with spatiotemporal features is used to capture the complex evolution of structures and properties of materials under external field stimuli and to design materials with excellent performance via taking full advantage of data information even in a small‐scale dataset.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202200908</identifier><identifier>PMID: 35483076</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>additive manufacturing ; Artificial neural networks ; Datasets ; deep learning ; Feature extraction ; Learning ; machine learning ; material design ; Material properties ; porous silicone rubber ; Silicone rubber</subject><ispartof>Advanced materials (Weinheim), 2022-07, Vol.34 (26), p.e2200908-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3738-9d58a58da1eb59cf88db9b3c12f81217c5bc78959cb7f7caa29af95e582154963</citedby><cites>FETCH-LOGICAL-c3738-9d58a58da1eb59cf88db9b3c12f81217c5bc78959cb7f7caa29af95e582154963</cites><orcidid>0000-0001-7467-7530 ; 0000-0002-7945-7462 ; 0000-0002-7909-450X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202200908$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202200908$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35483076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Songlin</creatorcontrib><creatorcontrib>Chai, Haiyang</creatorcontrib><creatorcontrib>Xiong, Yuqi</creatorcontrib><creatorcontrib>Kang, Ming</creatorcontrib><creatorcontrib>Geng, Chengzhen</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Chen, Yanqiu</creatorcontrib><creatorcontrib>Zhang, Yaling</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Li, Changlin</creatorcontrib><creatorcontrib>Wei, Hao</creatorcontrib><creatorcontrib>Zhao, Yuhang</creatorcontrib><creatorcontrib>Yu, Fengmei</creatorcontrib><creatorcontrib>Lu, Ai</creatorcontrib><title>Studying Complex Evolution of Hyperelastic Materials under External Field Stimuli using Artificial Neural Networks with Spatiotemporal Features in a Small‐Scale Dataset</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Deep‐learning (DL) methods, in consideration of their excellence in dealing with highly complex structure–performance relationships for materials, are expected to become a new design paradigm for breakthroughs in material performance. However, in most cases, it is impractical to collect massive‐scale experimental data or open‐source theoretical databases to support training DL models with sufficient prediction accuracy. In a dataset consisting of 483 porous silicone rubber observations generated via ink‐writing additive manufacturing, this work demonstrates that constructing low‐dimensional, accurate descriptors is the prerequisite for obtaining high‐precision DL models based on small experimental datasets. On this basis, a unique convolutional bidirectional long short‐term memory model with spatiotemporal features extraction capability is designed, whose hierarchical learning mechanism further reduces the requirement for the amount of data by taking full advantage of data information. The proposed approach can be expected as a powerful tool for innovative material design on small experimental datasets, which can also be used to explore the evolutionary mechanisms of the structures and properties of materials under complex working conditions.
Nonlinear mechanical properties of hyperelastic materials can be viewed as responses of materials to external serial stimuli. A convolutional bidirectional long short‐term memory (CBLSTM) model with spatiotemporal features is used to capture the complex evolution of structures and properties of materials under external field stimuli and to design materials with excellent performance via taking full advantage of data information even in a small‐scale dataset.</description><subject>additive manufacturing</subject><subject>Artificial neural networks</subject><subject>Datasets</subject><subject>deep learning</subject><subject>Feature extraction</subject><subject>Learning</subject><subject>machine learning</subject><subject>material design</subject><subject>Material properties</subject><subject>porous silicone rubber</subject><subject>Silicone rubber</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u1DAQhy0EokvhyhFZ4sIli-PEiX1cbXcpUguHhXPkOBNwceLgP93ujUfoc_SxeBIcthSJC6fRaL75xvIPoZc5WeaE0LeyG-SSEkoJEYQ_Qouc0TwriWCP0YKIgmWiKvkJeub9FUlMRaqn6KRgJS9IXS3Q3S7E7qDHL3hth8nADd5cWxODtiO2PT4_TODASB-0wpcygNPSeBzHDhze3KR-lAZvNZgO74IeotE4-lm3ckH3WiUcf4Dofpewt-6bx3sdvuLdJNORAMNk5-EWZIgOPNYjlng3SGN-_rjdKWkAn8kgPYTn6EmfjsOL-3qKPm83n9bn2cXHd-_Xq4tMFXXBM9ExLhnvZA4tE6rnvGtFW6ic9jynea1Yq2ou0qit-1pJSYXsBQPGac5KURWn6M3ROzn7PYIPzaC9AmPkCDb6hlYJpaIkM_r6H_TKxvlLZorTqkwvKhK1PFLKWe8d9M3k9CDdoclJM6fYzCk2DymmhVf32tgO0D3gf2JLgDgCe23g8B9dszq7XP2V_wJAB601</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Yu, Songlin</creator><creator>Chai, Haiyang</creator><creator>Xiong, Yuqi</creator><creator>Kang, Ming</creator><creator>Geng, Chengzhen</creator><creator>Liu, Yu</creator><creator>Chen, Yanqiu</creator><creator>Zhang, Yaling</creator><creator>Zhang, Qian</creator><creator>Li, Changlin</creator><creator>Wei, Hao</creator><creator>Zhao, Yuhang</creator><creator>Yu, Fengmei</creator><creator>Lu, Ai</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7467-7530</orcidid><orcidid>https://orcid.org/0000-0002-7945-7462</orcidid><orcidid>https://orcid.org/0000-0002-7909-450X</orcidid></search><sort><creationdate>20220701</creationdate><title>Studying Complex Evolution of Hyperelastic Materials under External Field Stimuli using Artificial Neural Networks with Spatiotemporal Features in a Small‐Scale Dataset</title><author>Yu, Songlin ; Chai, Haiyang ; Xiong, Yuqi ; Kang, Ming ; Geng, Chengzhen ; Liu, Yu ; Chen, Yanqiu ; Zhang, Yaling ; Zhang, Qian ; Li, Changlin ; Wei, Hao ; Zhao, Yuhang ; Yu, Fengmei ; Lu, Ai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3738-9d58a58da1eb59cf88db9b3c12f81217c5bc78959cb7f7caa29af95e582154963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>additive manufacturing</topic><topic>Artificial neural networks</topic><topic>Datasets</topic><topic>deep learning</topic><topic>Feature extraction</topic><topic>Learning</topic><topic>machine learning</topic><topic>material design</topic><topic>Material properties</topic><topic>porous silicone rubber</topic><topic>Silicone rubber</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Songlin</creatorcontrib><creatorcontrib>Chai, Haiyang</creatorcontrib><creatorcontrib>Xiong, Yuqi</creatorcontrib><creatorcontrib>Kang, Ming</creatorcontrib><creatorcontrib>Geng, Chengzhen</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Chen, Yanqiu</creatorcontrib><creatorcontrib>Zhang, Yaling</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Li, Changlin</creatorcontrib><creatorcontrib>Wei, Hao</creatorcontrib><creatorcontrib>Zhao, Yuhang</creatorcontrib><creatorcontrib>Yu, Fengmei</creatorcontrib><creatorcontrib>Lu, Ai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Songlin</au><au>Chai, Haiyang</au><au>Xiong, Yuqi</au><au>Kang, Ming</au><au>Geng, Chengzhen</au><au>Liu, Yu</au><au>Chen, Yanqiu</au><au>Zhang, Yaling</au><au>Zhang, Qian</au><au>Li, Changlin</au><au>Wei, Hao</au><au>Zhao, Yuhang</au><au>Yu, Fengmei</au><au>Lu, Ai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Studying Complex Evolution of Hyperelastic Materials under External Field Stimuli using Artificial Neural Networks with Spatiotemporal Features in a Small‐Scale Dataset</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>34</volume><issue>26</issue><spage>e2200908</spage><epage>n/a</epage><pages>e2200908-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Deep‐learning (DL) methods, in consideration of their excellence in dealing with highly complex structure–performance relationships for materials, are expected to become a new design paradigm for breakthroughs in material performance. However, in most cases, it is impractical to collect massive‐scale experimental data or open‐source theoretical databases to support training DL models with sufficient prediction accuracy. In a dataset consisting of 483 porous silicone rubber observations generated via ink‐writing additive manufacturing, this work demonstrates that constructing low‐dimensional, accurate descriptors is the prerequisite for obtaining high‐precision DL models based on small experimental datasets. On this basis, a unique convolutional bidirectional long short‐term memory model with spatiotemporal features extraction capability is designed, whose hierarchical learning mechanism further reduces the requirement for the amount of data by taking full advantage of data information. The proposed approach can be expected as a powerful tool for innovative material design on small experimental datasets, which can also be used to explore the evolutionary mechanisms of the structures and properties of materials under complex working conditions.
Nonlinear mechanical properties of hyperelastic materials can be viewed as responses of materials to external serial stimuli. A convolutional bidirectional long short‐term memory (CBLSTM) model with spatiotemporal features is used to capture the complex evolution of structures and properties of materials under external field stimuli and to design materials with excellent performance via taking full advantage of data information even in a small‐scale dataset.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35483076</pmid><doi>10.1002/adma.202200908</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7467-7530</orcidid><orcidid>https://orcid.org/0000-0002-7945-7462</orcidid><orcidid>https://orcid.org/0000-0002-7909-450X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2022-07, Vol.34 (26), p.e2200908-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2658229406 |
source | Access via Wiley Online Library |
subjects | additive manufacturing Artificial neural networks Datasets deep learning Feature extraction Learning machine learning material design Material properties porous silicone rubber Silicone rubber |
title | Studying Complex Evolution of Hyperelastic Materials under External Field Stimuli using Artificial Neural Networks with Spatiotemporal Features in a Small‐Scale Dataset |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A50%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Studying%20Complex%20Evolution%20of%20Hyperelastic%20Materials%20under%20External%20Field%20Stimuli%20using%20Artificial%20Neural%20Networks%20with%20Spatiotemporal%20Features%20in%20a%20Small%E2%80%90Scale%20Dataset&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Yu,%20Songlin&rft.date=2022-07-01&rft.volume=34&rft.issue=26&rft.spage=e2200908&rft.epage=n/a&rft.pages=e2200908-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202200908&rft_dat=%3Cproquest_cross%3E2682643733%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682643733&rft_id=info:pmid/35483076&rfr_iscdi=true |