Materials Data toward Machine Learning: Advances and Challenges

Machine learning (ML) is believed to have enabled a paradigm shift in materials research, and in practice, ML has demonstrated its power in speeding up the cost-efficient discovery of new materials and autonomizing materials laboratories. In this Perspective, current research progress in materials d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2022-05, Vol.13 (18), p.3965-3977
Hauptverfasser: Zhu, Linggang, Zhou, Jian, Sun, Zhimei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3977
container_issue 18
container_start_page 3965
container_title The journal of physical chemistry letters
container_volume 13
creator Zhu, Linggang
Zhou, Jian
Sun, Zhimei
description Machine learning (ML) is believed to have enabled a paradigm shift in materials research, and in practice, ML has demonstrated its power in speeding up the cost-efficient discovery of new materials and autonomizing materials laboratories. In this Perspective, current research progress in materials data which are the backbones of ML are reviewed, focusing on high-throughput data generation, standardized data storage, and data representation. More importantly, the challenging issues in materials data that should be overcome to unlock the full potential of ML in materials research and development, including classic 5V (volume, velocity, variety, veracity, and value) issues, 3M (multicomponent, multiscale, and multistage) challenges, co-mining of experimental and computational data, and materials data toward transferable/explainable ML or causal ML, are discussed.
doi_str_mv 10.1021/acs.jpclett.2c00576
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2656756150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2656756150</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-dfcecd9ef294ff33f52d57a727db35281f7aa11b40f69687dd6a7a178463cd033</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBUgoSzZp7Th-hA2qylNqxQbW1tSPNlXqFDsB8fcEGhArVjOLe-5oDkLnBI8JzsgEdBxvdrqyTTPONMZM8AM0JEUuU0EkO_yzD9BJjBuMeYGlOEYDynJJRM6H6HoBjQ0lVDG5gQaSpn6HYJIF6HXpbTK3EHzpV1fJ1LyB1zYm4E0yW0NVWb-y8RQduQ62Z_0coZe72-fZQzp_un-cTecp0Jw1qXHaalNYlxW5c5Q6lhkmQGTCLCnLJHECgJBljh0vuBTGcBBAhMw51QZTOkKX-95dqF9bGxu1LaO2VQXe1m1UGWdcME4Y7qJ0H9WhjjFYp3ah3EL4UASrL3OqM6d6c6o311EX_YF2ubXml_lR1QUm-8A3XbfBd__-W_kJDX18YQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656756150</pqid></control><display><type>article</type><title>Materials Data toward Machine Learning: Advances and Challenges</title><source>MEDLINE</source><source>ACS Publications</source><creator>Zhu, Linggang ; Zhou, Jian ; Sun, Zhimei</creator><creatorcontrib>Zhu, Linggang ; Zhou, Jian ; Sun, Zhimei</creatorcontrib><description>Machine learning (ML) is believed to have enabled a paradigm shift in materials research, and in practice, ML has demonstrated its power in speeding up the cost-efficient discovery of new materials and autonomizing materials laboratories. In this Perspective, current research progress in materials data which are the backbones of ML are reviewed, focusing on high-throughput data generation, standardized data storage, and data representation. More importantly, the challenging issues in materials data that should be overcome to unlock the full potential of ML in materials research and development, including classic 5V (volume, velocity, variety, veracity, and value) issues, 3M (multicomponent, multiscale, and multistage) challenges, co-mining of experimental and computational data, and materials data toward transferable/explainable ML or causal ML, are discussed.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.2c00576</identifier><identifier>PMID: 35481746</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Machine Learning</subject><ispartof>The journal of physical chemistry letters, 2022-05, Vol.13 (18), p.3965-3977</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-dfcecd9ef294ff33f52d57a727db35281f7aa11b40f69687dd6a7a178463cd033</citedby><cites>FETCH-LOGICAL-a345t-dfcecd9ef294ff33f52d57a727db35281f7aa11b40f69687dd6a7a178463cd033</cites><orcidid>0000-0002-4438-5032 ; 0000-0003-2514-4177</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.2c00576$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.2c00576$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35481746$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Linggang</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Sun, Zhimei</creatorcontrib><title>Materials Data toward Machine Learning: Advances and Challenges</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Machine learning (ML) is believed to have enabled a paradigm shift in materials research, and in practice, ML has demonstrated its power in speeding up the cost-efficient discovery of new materials and autonomizing materials laboratories. In this Perspective, current research progress in materials data which are the backbones of ML are reviewed, focusing on high-throughput data generation, standardized data storage, and data representation. More importantly, the challenging issues in materials data that should be overcome to unlock the full potential of ML in materials research and development, including classic 5V (volume, velocity, variety, veracity, and value) issues, 3M (multicomponent, multiscale, and multistage) challenges, co-mining of experimental and computational data, and materials data toward transferable/explainable ML or causal ML, are discussed.</description><subject>Machine Learning</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwBUgoSzZp7Th-hA2qylNqxQbW1tSPNlXqFDsB8fcEGhArVjOLe-5oDkLnBI8JzsgEdBxvdrqyTTPONMZM8AM0JEUuU0EkO_yzD9BJjBuMeYGlOEYDynJJRM6H6HoBjQ0lVDG5gQaSpn6HYJIF6HXpbTK3EHzpV1fJ1LyB1zYm4E0yW0NVWb-y8RQduQ62Z_0coZe72-fZQzp_un-cTecp0Jw1qXHaalNYlxW5c5Q6lhkmQGTCLCnLJHECgJBljh0vuBTGcBBAhMw51QZTOkKX-95dqF9bGxu1LaO2VQXe1m1UGWdcME4Y7qJ0H9WhjjFYp3ah3EL4UASrL3OqM6d6c6o311EX_YF2ubXml_lR1QUm-8A3XbfBd__-W_kJDX18YQ</recordid><startdate>20220512</startdate><enddate>20220512</enddate><creator>Zhu, Linggang</creator><creator>Zhou, Jian</creator><creator>Sun, Zhimei</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4438-5032</orcidid><orcidid>https://orcid.org/0000-0003-2514-4177</orcidid></search><sort><creationdate>20220512</creationdate><title>Materials Data toward Machine Learning: Advances and Challenges</title><author>Zhu, Linggang ; Zhou, Jian ; Sun, Zhimei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-dfcecd9ef294ff33f52d57a727db35281f7aa11b40f69687dd6a7a178463cd033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Machine Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Linggang</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Sun, Zhimei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Linggang</au><au>Zhou, Jian</au><au>Sun, Zhimei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Materials Data toward Machine Learning: Advances and Challenges</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2022-05-12</date><risdate>2022</risdate><volume>13</volume><issue>18</issue><spage>3965</spage><epage>3977</epage><pages>3965-3977</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Machine learning (ML) is believed to have enabled a paradigm shift in materials research, and in practice, ML has demonstrated its power in speeding up the cost-efficient discovery of new materials and autonomizing materials laboratories. In this Perspective, current research progress in materials data which are the backbones of ML are reviewed, focusing on high-throughput data generation, standardized data storage, and data representation. More importantly, the challenging issues in materials data that should be overcome to unlock the full potential of ML in materials research and development, including classic 5V (volume, velocity, variety, veracity, and value) issues, 3M (multicomponent, multiscale, and multistage) challenges, co-mining of experimental and computational data, and materials data toward transferable/explainable ML or causal ML, are discussed.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35481746</pmid><doi>10.1021/acs.jpclett.2c00576</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4438-5032</orcidid><orcidid>https://orcid.org/0000-0003-2514-4177</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2022-05, Vol.13 (18), p.3965-3977
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2656756150
source MEDLINE; ACS Publications
subjects Machine Learning
title Materials Data toward Machine Learning: Advances and Challenges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Materials%20Data%20toward%20Machine%20Learning:%20Advances%20and%20Challenges&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Zhu,%20Linggang&rft.date=2022-05-12&rft.volume=13&rft.issue=18&rft.spage=3965&rft.epage=3977&rft.pages=3965-3977&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.2c00576&rft_dat=%3Cproquest_cross%3E2656756150%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656756150&rft_id=info:pmid/35481746&rfr_iscdi=true