Machine learning-aided engineering of hydrolases for PET depolymerization
Plastic waste poses an ecological challenge 1 – 3 and enzymatic degradation offers one, potentially green and scalable, route for polyesters waste recycling 4 . Poly(ethylene terephthalate) (PET) accounts for 12% of global solid waste 5 , and a circular carbon economy for PET is theoretically attain...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2022-04, Vol.604 (7907), p.662-667 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 667 |
---|---|
container_issue | 7907 |
container_start_page | 662 |
container_title | Nature (London) |
container_volume | 604 |
creator | Lu, Hongyuan Diaz, Daniel J. Czarnecki, Natalie J. Zhu, Congzhi Kim, Wantae Shroff, Raghav Acosta, Daniel J. Alexander, Bradley R. Cole, Hannah O. Zhang, Yan Lynd, Nathaniel A. Ellington, Andrew D. Alper, Hal S. |
description | Plastic waste poses an ecological challenge
1
–
3
and enzymatic degradation offers one, potentially green and scalable, route for polyesters waste recycling
4
. Poly(ethylene terephthalate) (PET) accounts for 12% of global solid waste
5
, and a circular carbon economy for PET is theoretically attainable through rapid enzymatic depolymerization followed by repolymerization or conversion/valorization into other products
6
–
10
. Application of PET hydrolases, however, has been hampered by their lack of robustness to pH and temperature ranges, slow reaction rates and inability to directly use untreated postconsumer plastics
11
. Here, we use a structure-based, machine learning algorithm to engineer a robust and active PET hydrolase. Our mutant and scaffold combination (FAST-PETase: functional, active, stable and tolerant PETase) contains five mutations compared to wild-type PETase (N233K/R224Q/S121E from prediction and D186H/R280A from scaffold) and shows superior PET-hydrolytic activity relative to both wild-type and engineered alternatives
12
between 30 and 50 °C and a range of pH levels. We demonstrate that untreated, postconsumer-PET from 51 different thermoformed products can all be almost completely degraded by FAST-PETase in 1 week. FAST-PETase can also depolymerize untreated, amorphous portions of a commercial water bottle and an entire thermally pretreated water bottle at 50 ºC. Finally, we demonstrate a closed-loop PET recycling process by using FAST-PETase and resynthesizing PET from the recovered monomers. Collectively, our results demonstrate a viable route for enzymatic plastic recycling at the industrial scale.
Untreated, postconsumer-PET from 51 different thermoformed products can all be almost completely degraded by FAST-PETase in 1 week and PET can be resynthesized from the recovered monomers, demonstrating recycling at the industrial scale. |
doi_str_mv | 10.1038/s41586-022-04599-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2656746094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2657443249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-d4841cd37312f8ba57fc5489e0ed3d8ca4f1b0882239e7ac0078bf39376f35db3</originalsourceid><addsrcrecordid>eNp9kLtOAzEQRS0EgvD4AQq0Eg2NwY_ZtbdEiJcEggJqy7seJ4s262AnRfL1OISHREE10ujcO6NDyDFn55xJfZGAl7qiTAjKoKxrutoiIw6qolBptU1GjAlNmZbVHtlP6Y0xVnIFu2RPlqC0kGpE7h9tO-kGLHq0ceiGMbWdQ1fgMM5bjHlTBF9Mli6G3iZMhQ-xeL5-KRzOQr-cZmRl510YDsmOt33Co695QF5vrl-u7ujD0-391eUDbQH4nDrQwFsnleTC68aWyrcl6BoZOul0a8HzhmkthKxR2ZYxpRsva6kqL0vXyANytumdxfC-wDQ30y612Pd2wLBIRlRlpaBiNWT09A_6FhZxyN-tKQUgBdSZEhuqjSGliN7MYje1cWk4M2vRZiPaZNHmU7RZ5dDJV_WimaL7iXybzYDcAGm2lojx9_Y_tR-xpIj5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2657443249</pqid></control><display><type>article</type><title>Machine learning-aided engineering of hydrolases for PET depolymerization</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lu, Hongyuan ; Diaz, Daniel J. ; Czarnecki, Natalie J. ; Zhu, Congzhi ; Kim, Wantae ; Shroff, Raghav ; Acosta, Daniel J. ; Alexander, Bradley R. ; Cole, Hannah O. ; Zhang, Yan ; Lynd, Nathaniel A. ; Ellington, Andrew D. ; Alper, Hal S.</creator><creatorcontrib>Lu, Hongyuan ; Diaz, Daniel J. ; Czarnecki, Natalie J. ; Zhu, Congzhi ; Kim, Wantae ; Shroff, Raghav ; Acosta, Daniel J. ; Alexander, Bradley R. ; Cole, Hannah O. ; Zhang, Yan ; Lynd, Nathaniel A. ; Ellington, Andrew D. ; Alper, Hal S.</creatorcontrib><description>Plastic waste poses an ecological challenge
1
–
3
and enzymatic degradation offers one, potentially green and scalable, route for polyesters waste recycling
4
. Poly(ethylene terephthalate) (PET) accounts for 12% of global solid waste
5
, and a circular carbon economy for PET is theoretically attainable through rapid enzymatic depolymerization followed by repolymerization or conversion/valorization into other products
6
–
10
. Application of PET hydrolases, however, has been hampered by their lack of robustness to pH and temperature ranges, slow reaction rates and inability to directly use untreated postconsumer plastics
11
. Here, we use a structure-based, machine learning algorithm to engineer a robust and active PET hydrolase. Our mutant and scaffold combination (FAST-PETase: functional, active, stable and tolerant PETase) contains five mutations compared to wild-type PETase (N233K/R224Q/S121E from prediction and D186H/R280A from scaffold) and shows superior PET-hydrolytic activity relative to both wild-type and engineered alternatives
12
between 30 and 50 °C and a range of pH levels. We demonstrate that untreated, postconsumer-PET from 51 different thermoformed products can all be almost completely degraded by FAST-PETase in 1 week. FAST-PETase can also depolymerize untreated, amorphous portions of a commercial water bottle and an entire thermally pretreated water bottle at 50 ºC. Finally, we demonstrate a closed-loop PET recycling process by using FAST-PETase and resynthesizing PET from the recovered monomers. Collectively, our results demonstrate a viable route for enzymatic plastic recycling at the industrial scale.
Untreated, postconsumer-PET from 51 different thermoformed products can all be almost completely degraded by FAST-PETase in 1 week and PET can be resynthesized from the recovered monomers, demonstrating recycling at the industrial scale.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-022-04599-z</identifier><identifier>PMID: 35478237</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/181/735 ; 631/61 ; 639/301/923/1028 ; 639/638/455 ; 82/83 ; Algorithms ; Amino acids ; Circular economy ; Crystal structure ; Depolymerization ; Enzymes ; Humanities and Social Sciences ; Hydrolase ; Hydrolases - genetics ; Hydrolases - metabolism ; Hydrolysis ; Learning algorithms ; Machine Learning ; Monomers ; multidisciplinary ; Mutation ; Neural networks ; pH effects ; Plastic debris ; Plastics ; Plastics recycling ; Polyester resins ; Polyesters ; Polyethylene terephthalate ; Polyethylene Terephthalates - metabolism ; Protein Engineering ; Proteins ; Recycling ; Scaffolds ; Science ; Science (multidisciplinary) ; Waste recycling</subject><ispartof>Nature (London), 2022-04, Vol.604 (7907), p.662-667</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Apr 28, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-d4841cd37312f8ba57fc5489e0ed3d8ca4f1b0882239e7ac0078bf39376f35db3</citedby><cites>FETCH-LOGICAL-c441t-d4841cd37312f8ba57fc5489e0ed3d8ca4f1b0882239e7ac0078bf39376f35db3</cites><orcidid>0000-0001-9170-1010 ; 0000-0002-9360-5388 ; 0000-0002-7891-2128 ; 0000-0003-3010-5068 ; 0000-0001-5950-536X ; 0000-0002-8246-8605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-022-04599-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-022-04599-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35478237$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Hongyuan</creatorcontrib><creatorcontrib>Diaz, Daniel J.</creatorcontrib><creatorcontrib>Czarnecki, Natalie J.</creatorcontrib><creatorcontrib>Zhu, Congzhi</creatorcontrib><creatorcontrib>Kim, Wantae</creatorcontrib><creatorcontrib>Shroff, Raghav</creatorcontrib><creatorcontrib>Acosta, Daniel J.</creatorcontrib><creatorcontrib>Alexander, Bradley R.</creatorcontrib><creatorcontrib>Cole, Hannah O.</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Lynd, Nathaniel A.</creatorcontrib><creatorcontrib>Ellington, Andrew D.</creatorcontrib><creatorcontrib>Alper, Hal S.</creatorcontrib><title>Machine learning-aided engineering of hydrolases for PET depolymerization</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Plastic waste poses an ecological challenge
1
–
3
and enzymatic degradation offers one, potentially green and scalable, route for polyesters waste recycling
4
. Poly(ethylene terephthalate) (PET) accounts for 12% of global solid waste
5
, and a circular carbon economy for PET is theoretically attainable through rapid enzymatic depolymerization followed by repolymerization or conversion/valorization into other products
6
–
10
. Application of PET hydrolases, however, has been hampered by their lack of robustness to pH and temperature ranges, slow reaction rates and inability to directly use untreated postconsumer plastics
11
. Here, we use a structure-based, machine learning algorithm to engineer a robust and active PET hydrolase. Our mutant and scaffold combination (FAST-PETase: functional, active, stable and tolerant PETase) contains five mutations compared to wild-type PETase (N233K/R224Q/S121E from prediction and D186H/R280A from scaffold) and shows superior PET-hydrolytic activity relative to both wild-type and engineered alternatives
12
between 30 and 50 °C and a range of pH levels. We demonstrate that untreated, postconsumer-PET from 51 different thermoformed products can all be almost completely degraded by FAST-PETase in 1 week. FAST-PETase can also depolymerize untreated, amorphous portions of a commercial water bottle and an entire thermally pretreated water bottle at 50 ºC. Finally, we demonstrate a closed-loop PET recycling process by using FAST-PETase and resynthesizing PET from the recovered monomers. Collectively, our results demonstrate a viable route for enzymatic plastic recycling at the industrial scale.
Untreated, postconsumer-PET from 51 different thermoformed products can all be almost completely degraded by FAST-PETase in 1 week and PET can be resynthesized from the recovered monomers, demonstrating recycling at the industrial scale.</description><subject>631/181/735</subject><subject>631/61</subject><subject>639/301/923/1028</subject><subject>639/638/455</subject><subject>82/83</subject><subject>Algorithms</subject><subject>Amino acids</subject><subject>Circular economy</subject><subject>Crystal structure</subject><subject>Depolymerization</subject><subject>Enzymes</subject><subject>Humanities and Social Sciences</subject><subject>Hydrolase</subject><subject>Hydrolases - genetics</subject><subject>Hydrolases - metabolism</subject><subject>Hydrolysis</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Monomers</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Neural networks</subject><subject>pH effects</subject><subject>Plastic debris</subject><subject>Plastics</subject><subject>Plastics recycling</subject><subject>Polyester resins</subject><subject>Polyesters</subject><subject>Polyethylene terephthalate</subject><subject>Polyethylene Terephthalates - metabolism</subject><subject>Protein Engineering</subject><subject>Proteins</subject><subject>Recycling</subject><subject>Scaffolds</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Waste recycling</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kLtOAzEQRS0EgvD4AQq0Eg2NwY_ZtbdEiJcEggJqy7seJ4s262AnRfL1OISHREE10ujcO6NDyDFn55xJfZGAl7qiTAjKoKxrutoiIw6qolBptU1GjAlNmZbVHtlP6Y0xVnIFu2RPlqC0kGpE7h9tO-kGLHq0ceiGMbWdQ1fgMM5bjHlTBF9Mli6G3iZMhQ-xeL5-KRzOQr-cZmRl510YDsmOt33Co695QF5vrl-u7ujD0-391eUDbQH4nDrQwFsnleTC68aWyrcl6BoZOul0a8HzhmkthKxR2ZYxpRsva6kqL0vXyANytumdxfC-wDQ30y612Pd2wLBIRlRlpaBiNWT09A_6FhZxyN-tKQUgBdSZEhuqjSGliN7MYje1cWk4M2vRZiPaZNHmU7RZ5dDJV_WimaL7iXybzYDcAGm2lojx9_Y_tR-xpIj5</recordid><startdate>20220428</startdate><enddate>20220428</enddate><creator>Lu, Hongyuan</creator><creator>Diaz, Daniel J.</creator><creator>Czarnecki, Natalie J.</creator><creator>Zhu, Congzhi</creator><creator>Kim, Wantae</creator><creator>Shroff, Raghav</creator><creator>Acosta, Daniel J.</creator><creator>Alexander, Bradley R.</creator><creator>Cole, Hannah O.</creator><creator>Zhang, Yan</creator><creator>Lynd, Nathaniel A.</creator><creator>Ellington, Andrew D.</creator><creator>Alper, Hal S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9170-1010</orcidid><orcidid>https://orcid.org/0000-0002-9360-5388</orcidid><orcidid>https://orcid.org/0000-0002-7891-2128</orcidid><orcidid>https://orcid.org/0000-0003-3010-5068</orcidid><orcidid>https://orcid.org/0000-0001-5950-536X</orcidid><orcidid>https://orcid.org/0000-0002-8246-8605</orcidid></search><sort><creationdate>20220428</creationdate><title>Machine learning-aided engineering of hydrolases for PET depolymerization</title><author>Lu, Hongyuan ; Diaz, Daniel J. ; Czarnecki, Natalie J. ; Zhu, Congzhi ; Kim, Wantae ; Shroff, Raghav ; Acosta, Daniel J. ; Alexander, Bradley R. ; Cole, Hannah O. ; Zhang, Yan ; Lynd, Nathaniel A. ; Ellington, Andrew D. ; Alper, Hal S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-d4841cd37312f8ba57fc5489e0ed3d8ca4f1b0882239e7ac0078bf39376f35db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/181/735</topic><topic>631/61</topic><topic>639/301/923/1028</topic><topic>639/638/455</topic><topic>82/83</topic><topic>Algorithms</topic><topic>Amino acids</topic><topic>Circular economy</topic><topic>Crystal structure</topic><topic>Depolymerization</topic><topic>Enzymes</topic><topic>Humanities and Social Sciences</topic><topic>Hydrolase</topic><topic>Hydrolases - genetics</topic><topic>Hydrolases - metabolism</topic><topic>Hydrolysis</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Monomers</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Neural networks</topic><topic>pH effects</topic><topic>Plastic debris</topic><topic>Plastics</topic><topic>Plastics recycling</topic><topic>Polyester resins</topic><topic>Polyesters</topic><topic>Polyethylene terephthalate</topic><topic>Polyethylene Terephthalates - metabolism</topic><topic>Protein Engineering</topic><topic>Proteins</topic><topic>Recycling</topic><topic>Scaffolds</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Waste recycling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Hongyuan</creatorcontrib><creatorcontrib>Diaz, Daniel J.</creatorcontrib><creatorcontrib>Czarnecki, Natalie J.</creatorcontrib><creatorcontrib>Zhu, Congzhi</creatorcontrib><creatorcontrib>Kim, Wantae</creatorcontrib><creatorcontrib>Shroff, Raghav</creatorcontrib><creatorcontrib>Acosta, Daniel J.</creatorcontrib><creatorcontrib>Alexander, Bradley R.</creatorcontrib><creatorcontrib>Cole, Hannah O.</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Lynd, Nathaniel A.</creatorcontrib><creatorcontrib>Ellington, Andrew D.</creatorcontrib><creatorcontrib>Alper, Hal S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Hongyuan</au><au>Diaz, Daniel J.</au><au>Czarnecki, Natalie J.</au><au>Zhu, Congzhi</au><au>Kim, Wantae</au><au>Shroff, Raghav</au><au>Acosta, Daniel J.</au><au>Alexander, Bradley R.</au><au>Cole, Hannah O.</au><au>Zhang, Yan</au><au>Lynd, Nathaniel A.</au><au>Ellington, Andrew D.</au><au>Alper, Hal S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning-aided engineering of hydrolases for PET depolymerization</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2022-04-28</date><risdate>2022</risdate><volume>604</volume><issue>7907</issue><spage>662</spage><epage>667</epage><pages>662-667</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Plastic waste poses an ecological challenge
1
–
3
and enzymatic degradation offers one, potentially green and scalable, route for polyesters waste recycling
4
. Poly(ethylene terephthalate) (PET) accounts for 12% of global solid waste
5
, and a circular carbon economy for PET is theoretically attainable through rapid enzymatic depolymerization followed by repolymerization or conversion/valorization into other products
6
–
10
. Application of PET hydrolases, however, has been hampered by their lack of robustness to pH and temperature ranges, slow reaction rates and inability to directly use untreated postconsumer plastics
11
. Here, we use a structure-based, machine learning algorithm to engineer a robust and active PET hydrolase. Our mutant and scaffold combination (FAST-PETase: functional, active, stable and tolerant PETase) contains five mutations compared to wild-type PETase (N233K/R224Q/S121E from prediction and D186H/R280A from scaffold) and shows superior PET-hydrolytic activity relative to both wild-type and engineered alternatives
12
between 30 and 50 °C and a range of pH levels. We demonstrate that untreated, postconsumer-PET from 51 different thermoformed products can all be almost completely degraded by FAST-PETase in 1 week. FAST-PETase can also depolymerize untreated, amorphous portions of a commercial water bottle and an entire thermally pretreated water bottle at 50 ºC. Finally, we demonstrate a closed-loop PET recycling process by using FAST-PETase and resynthesizing PET from the recovered monomers. Collectively, our results demonstrate a viable route for enzymatic plastic recycling at the industrial scale.
Untreated, postconsumer-PET from 51 different thermoformed products can all be almost completely degraded by FAST-PETase in 1 week and PET can be resynthesized from the recovered monomers, demonstrating recycling at the industrial scale.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35478237</pmid><doi>10.1038/s41586-022-04599-z</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9170-1010</orcidid><orcidid>https://orcid.org/0000-0002-9360-5388</orcidid><orcidid>https://orcid.org/0000-0002-7891-2128</orcidid><orcidid>https://orcid.org/0000-0003-3010-5068</orcidid><orcidid>https://orcid.org/0000-0001-5950-536X</orcidid><orcidid>https://orcid.org/0000-0002-8246-8605</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2022-04, Vol.604 (7907), p.662-667 |
issn | 0028-0836 1476-4687 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2656746094 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | 631/181/735 631/61 639/301/923/1028 639/638/455 82/83 Algorithms Amino acids Circular economy Crystal structure Depolymerization Enzymes Humanities and Social Sciences Hydrolase Hydrolases - genetics Hydrolases - metabolism Hydrolysis Learning algorithms Machine Learning Monomers multidisciplinary Mutation Neural networks pH effects Plastic debris Plastics Plastics recycling Polyester resins Polyesters Polyethylene terephthalate Polyethylene Terephthalates - metabolism Protein Engineering Proteins Recycling Scaffolds Science Science (multidisciplinary) Waste recycling |
title | Machine learning-aided engineering of hydrolases for PET depolymerization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A51%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning-aided%20engineering%20of%20hydrolases%20for%20PET%20depolymerization&rft.jtitle=Nature%20(London)&rft.au=Lu,%20Hongyuan&rft.date=2022-04-28&rft.volume=604&rft.issue=7907&rft.spage=662&rft.epage=667&rft.pages=662-667&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-022-04599-z&rft_dat=%3Cproquest_cross%3E2657443249%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2657443249&rft_id=info:pmid/35478237&rfr_iscdi=true |