Machine learning-aided engineering of hydrolases for PET depolymerization

Plastic waste poses an ecological challenge 1 – 3 and enzymatic degradation offers one, potentially green and scalable, route for polyesters waste recycling 4 . Poly(ethylene terephthalate) (PET) accounts for 12% of global solid waste 5 , and a circular carbon economy for PET is theoretically attain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2022-04, Vol.604 (7907), p.662-667
Hauptverfasser: Lu, Hongyuan, Diaz, Daniel J., Czarnecki, Natalie J., Zhu, Congzhi, Kim, Wantae, Shroff, Raghav, Acosta, Daniel J., Alexander, Bradley R., Cole, Hannah O., Zhang, Yan, Lynd, Nathaniel A., Ellington, Andrew D., Alper, Hal S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 667
container_issue 7907
container_start_page 662
container_title Nature (London)
container_volume 604
creator Lu, Hongyuan
Diaz, Daniel J.
Czarnecki, Natalie J.
Zhu, Congzhi
Kim, Wantae
Shroff, Raghav
Acosta, Daniel J.
Alexander, Bradley R.
Cole, Hannah O.
Zhang, Yan
Lynd, Nathaniel A.
Ellington, Andrew D.
Alper, Hal S.
description Plastic waste poses an ecological challenge 1 – 3 and enzymatic degradation offers one, potentially green and scalable, route for polyesters waste recycling 4 . Poly(ethylene terephthalate) (PET) accounts for 12% of global solid waste 5 , and a circular carbon economy for PET is theoretically attainable through rapid enzymatic depolymerization followed by repolymerization or conversion/valorization into other products 6 – 10 . Application of PET hydrolases, however, has been hampered by their lack of robustness to pH and temperature ranges, slow reaction rates and inability to directly use untreated postconsumer plastics 11 . Here, we use a structure-based, machine learning algorithm to engineer a robust and active PET hydrolase. Our mutant and scaffold combination (FAST-PETase: functional, active, stable and tolerant PETase) contains five mutations compared to wild-type PETase (N233K/R224Q/S121E from prediction and D186H/R280A from scaffold) and shows superior PET-hydrolytic activity relative to both wild-type and engineered alternatives 12 between 30 and 50 °C and a range of pH levels. We demonstrate that untreated, postconsumer-PET from 51 different thermoformed products can all be almost completely degraded by FAST-PETase in 1 week. FAST-PETase can also depolymerize untreated, amorphous portions of a commercial water bottle and an entire thermally pretreated water bottle at 50 ºC. Finally, we demonstrate a closed-loop PET recycling process by using FAST-PETase and resynthesizing PET from the recovered monomers. Collectively, our results demonstrate a viable route for enzymatic plastic recycling at the industrial scale. Untreated, postconsumer-PET from 51 different thermoformed products can all be almost completely degraded by FAST-PETase in 1 week and PET can be resynthesized from the recovered monomers, demonstrating recycling at the industrial scale.
doi_str_mv 10.1038/s41586-022-04599-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2656746094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2657443249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-d4841cd37312f8ba57fc5489e0ed3d8ca4f1b0882239e7ac0078bf39376f35db3</originalsourceid><addsrcrecordid>eNp9kLtOAzEQRS0EgvD4AQq0Eg2NwY_ZtbdEiJcEggJqy7seJ4s262AnRfL1OISHREE10ujcO6NDyDFn55xJfZGAl7qiTAjKoKxrutoiIw6qolBptU1GjAlNmZbVHtlP6Y0xVnIFu2RPlqC0kGpE7h9tO-kGLHq0ceiGMbWdQ1fgMM5bjHlTBF9Mli6G3iZMhQ-xeL5-KRzOQr-cZmRl510YDsmOt33Co695QF5vrl-u7ujD0-391eUDbQH4nDrQwFsnleTC68aWyrcl6BoZOul0a8HzhmkthKxR2ZYxpRsva6kqL0vXyANytumdxfC-wDQ30y612Pd2wLBIRlRlpaBiNWT09A_6FhZxyN-tKQUgBdSZEhuqjSGliN7MYje1cWk4M2vRZiPaZNHmU7RZ5dDJV_WimaL7iXybzYDcAGm2lojx9_Y_tR-xpIj5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2657443249</pqid></control><display><type>article</type><title>Machine learning-aided engineering of hydrolases for PET depolymerization</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lu, Hongyuan ; Diaz, Daniel J. ; Czarnecki, Natalie J. ; Zhu, Congzhi ; Kim, Wantae ; Shroff, Raghav ; Acosta, Daniel J. ; Alexander, Bradley R. ; Cole, Hannah O. ; Zhang, Yan ; Lynd, Nathaniel A. ; Ellington, Andrew D. ; Alper, Hal S.</creator><creatorcontrib>Lu, Hongyuan ; Diaz, Daniel J. ; Czarnecki, Natalie J. ; Zhu, Congzhi ; Kim, Wantae ; Shroff, Raghav ; Acosta, Daniel J. ; Alexander, Bradley R. ; Cole, Hannah O. ; Zhang, Yan ; Lynd, Nathaniel A. ; Ellington, Andrew D. ; Alper, Hal S.</creatorcontrib><description>Plastic waste poses an ecological challenge 1 – 3 and enzymatic degradation offers one, potentially green and scalable, route for polyesters waste recycling 4 . Poly(ethylene terephthalate) (PET) accounts for 12% of global solid waste 5 , and a circular carbon economy for PET is theoretically attainable through rapid enzymatic depolymerization followed by repolymerization or conversion/valorization into other products 6 – 10 . Application of PET hydrolases, however, has been hampered by their lack of robustness to pH and temperature ranges, slow reaction rates and inability to directly use untreated postconsumer plastics 11 . Here, we use a structure-based, machine learning algorithm to engineer a robust and active PET hydrolase. Our mutant and scaffold combination (FAST-PETase: functional, active, stable and tolerant PETase) contains five mutations compared to wild-type PETase (N233K/R224Q/S121E from prediction and D186H/R280A from scaffold) and shows superior PET-hydrolytic activity relative to both wild-type and engineered alternatives 12 between 30 and 50 °C and a range of pH levels. We demonstrate that untreated, postconsumer-PET from 51 different thermoformed products can all be almost completely degraded by FAST-PETase in 1 week. FAST-PETase can also depolymerize untreated, amorphous portions of a commercial water bottle and an entire thermally pretreated water bottle at 50 ºC. Finally, we demonstrate a closed-loop PET recycling process by using FAST-PETase and resynthesizing PET from the recovered monomers. Collectively, our results demonstrate a viable route for enzymatic plastic recycling at the industrial scale. Untreated, postconsumer-PET from 51 different thermoformed products can all be almost completely degraded by FAST-PETase in 1 week and PET can be resynthesized from the recovered monomers, demonstrating recycling at the industrial scale.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-022-04599-z</identifier><identifier>PMID: 35478237</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/181/735 ; 631/61 ; 639/301/923/1028 ; 639/638/455 ; 82/83 ; Algorithms ; Amino acids ; Circular economy ; Crystal structure ; Depolymerization ; Enzymes ; Humanities and Social Sciences ; Hydrolase ; Hydrolases - genetics ; Hydrolases - metabolism ; Hydrolysis ; Learning algorithms ; Machine Learning ; Monomers ; multidisciplinary ; Mutation ; Neural networks ; pH effects ; Plastic debris ; Plastics ; Plastics recycling ; Polyester resins ; Polyesters ; Polyethylene terephthalate ; Polyethylene Terephthalates - metabolism ; Protein Engineering ; Proteins ; Recycling ; Scaffolds ; Science ; Science (multidisciplinary) ; Waste recycling</subject><ispartof>Nature (London), 2022-04, Vol.604 (7907), p.662-667</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Apr 28, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-d4841cd37312f8ba57fc5489e0ed3d8ca4f1b0882239e7ac0078bf39376f35db3</citedby><cites>FETCH-LOGICAL-c441t-d4841cd37312f8ba57fc5489e0ed3d8ca4f1b0882239e7ac0078bf39376f35db3</cites><orcidid>0000-0001-9170-1010 ; 0000-0002-9360-5388 ; 0000-0002-7891-2128 ; 0000-0003-3010-5068 ; 0000-0001-5950-536X ; 0000-0002-8246-8605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-022-04599-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-022-04599-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35478237$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Hongyuan</creatorcontrib><creatorcontrib>Diaz, Daniel J.</creatorcontrib><creatorcontrib>Czarnecki, Natalie J.</creatorcontrib><creatorcontrib>Zhu, Congzhi</creatorcontrib><creatorcontrib>Kim, Wantae</creatorcontrib><creatorcontrib>Shroff, Raghav</creatorcontrib><creatorcontrib>Acosta, Daniel J.</creatorcontrib><creatorcontrib>Alexander, Bradley R.</creatorcontrib><creatorcontrib>Cole, Hannah O.</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Lynd, Nathaniel A.</creatorcontrib><creatorcontrib>Ellington, Andrew D.</creatorcontrib><creatorcontrib>Alper, Hal S.</creatorcontrib><title>Machine learning-aided engineering of hydrolases for PET depolymerization</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Plastic waste poses an ecological challenge 1 – 3 and enzymatic degradation offers one, potentially green and scalable, route for polyesters waste recycling 4 . Poly(ethylene terephthalate) (PET) accounts for 12% of global solid waste 5 , and a circular carbon economy for PET is theoretically attainable through rapid enzymatic depolymerization followed by repolymerization or conversion/valorization into other products 6 – 10 . Application of PET hydrolases, however, has been hampered by their lack of robustness to pH and temperature ranges, slow reaction rates and inability to directly use untreated postconsumer plastics 11 . Here, we use a structure-based, machine learning algorithm to engineer a robust and active PET hydrolase. Our mutant and scaffold combination (FAST-PETase: functional, active, stable and tolerant PETase) contains five mutations compared to wild-type PETase (N233K/R224Q/S121E from prediction and D186H/R280A from scaffold) and shows superior PET-hydrolytic activity relative to both wild-type and engineered alternatives 12 between 30 and 50 °C and a range of pH levels. We demonstrate that untreated, postconsumer-PET from 51 different thermoformed products can all be almost completely degraded by FAST-PETase in 1 week. FAST-PETase can also depolymerize untreated, amorphous portions of a commercial water bottle and an entire thermally pretreated water bottle at 50 ºC. Finally, we demonstrate a closed-loop PET recycling process by using FAST-PETase and resynthesizing PET from the recovered monomers. Collectively, our results demonstrate a viable route for enzymatic plastic recycling at the industrial scale. Untreated, postconsumer-PET from 51 different thermoformed products can all be almost completely degraded by FAST-PETase in 1 week and PET can be resynthesized from the recovered monomers, demonstrating recycling at the industrial scale.</description><subject>631/181/735</subject><subject>631/61</subject><subject>639/301/923/1028</subject><subject>639/638/455</subject><subject>82/83</subject><subject>Algorithms</subject><subject>Amino acids</subject><subject>Circular economy</subject><subject>Crystal structure</subject><subject>Depolymerization</subject><subject>Enzymes</subject><subject>Humanities and Social Sciences</subject><subject>Hydrolase</subject><subject>Hydrolases - genetics</subject><subject>Hydrolases - metabolism</subject><subject>Hydrolysis</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Monomers</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Neural networks</subject><subject>pH effects</subject><subject>Plastic debris</subject><subject>Plastics</subject><subject>Plastics recycling</subject><subject>Polyester resins</subject><subject>Polyesters</subject><subject>Polyethylene terephthalate</subject><subject>Polyethylene Terephthalates - metabolism</subject><subject>Protein Engineering</subject><subject>Proteins</subject><subject>Recycling</subject><subject>Scaffolds</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Waste recycling</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kLtOAzEQRS0EgvD4AQq0Eg2NwY_ZtbdEiJcEggJqy7seJ4s262AnRfL1OISHREE10ujcO6NDyDFn55xJfZGAl7qiTAjKoKxrutoiIw6qolBptU1GjAlNmZbVHtlP6Y0xVnIFu2RPlqC0kGpE7h9tO-kGLHq0ceiGMbWdQ1fgMM5bjHlTBF9Mli6G3iZMhQ-xeL5-KRzOQr-cZmRl510YDsmOt33Co695QF5vrl-u7ujD0-391eUDbQH4nDrQwFsnleTC68aWyrcl6BoZOul0a8HzhmkthKxR2ZYxpRsva6kqL0vXyANytumdxfC-wDQ30y612Pd2wLBIRlRlpaBiNWT09A_6FhZxyN-tKQUgBdSZEhuqjSGliN7MYje1cWk4M2vRZiPaZNHmU7RZ5dDJV_WimaL7iXybzYDcAGm2lojx9_Y_tR-xpIj5</recordid><startdate>20220428</startdate><enddate>20220428</enddate><creator>Lu, Hongyuan</creator><creator>Diaz, Daniel J.</creator><creator>Czarnecki, Natalie J.</creator><creator>Zhu, Congzhi</creator><creator>Kim, Wantae</creator><creator>Shroff, Raghav</creator><creator>Acosta, Daniel J.</creator><creator>Alexander, Bradley R.</creator><creator>Cole, Hannah O.</creator><creator>Zhang, Yan</creator><creator>Lynd, Nathaniel A.</creator><creator>Ellington, Andrew D.</creator><creator>Alper, Hal S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9170-1010</orcidid><orcidid>https://orcid.org/0000-0002-9360-5388</orcidid><orcidid>https://orcid.org/0000-0002-7891-2128</orcidid><orcidid>https://orcid.org/0000-0003-3010-5068</orcidid><orcidid>https://orcid.org/0000-0001-5950-536X</orcidid><orcidid>https://orcid.org/0000-0002-8246-8605</orcidid></search><sort><creationdate>20220428</creationdate><title>Machine learning-aided engineering of hydrolases for PET depolymerization</title><author>Lu, Hongyuan ; Diaz, Daniel J. ; Czarnecki, Natalie J. ; Zhu, Congzhi ; Kim, Wantae ; Shroff, Raghav ; Acosta, Daniel J. ; Alexander, Bradley R. ; Cole, Hannah O. ; Zhang, Yan ; Lynd, Nathaniel A. ; Ellington, Andrew D. ; Alper, Hal S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-d4841cd37312f8ba57fc5489e0ed3d8ca4f1b0882239e7ac0078bf39376f35db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/181/735</topic><topic>631/61</topic><topic>639/301/923/1028</topic><topic>639/638/455</topic><topic>82/83</topic><topic>Algorithms</topic><topic>Amino acids</topic><topic>Circular economy</topic><topic>Crystal structure</topic><topic>Depolymerization</topic><topic>Enzymes</topic><topic>Humanities and Social Sciences</topic><topic>Hydrolase</topic><topic>Hydrolases - genetics</topic><topic>Hydrolases - metabolism</topic><topic>Hydrolysis</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Monomers</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Neural networks</topic><topic>pH effects</topic><topic>Plastic debris</topic><topic>Plastics</topic><topic>Plastics recycling</topic><topic>Polyester resins</topic><topic>Polyesters</topic><topic>Polyethylene terephthalate</topic><topic>Polyethylene Terephthalates - metabolism</topic><topic>Protein Engineering</topic><topic>Proteins</topic><topic>Recycling</topic><topic>Scaffolds</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Waste recycling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Hongyuan</creatorcontrib><creatorcontrib>Diaz, Daniel J.</creatorcontrib><creatorcontrib>Czarnecki, Natalie J.</creatorcontrib><creatorcontrib>Zhu, Congzhi</creatorcontrib><creatorcontrib>Kim, Wantae</creatorcontrib><creatorcontrib>Shroff, Raghav</creatorcontrib><creatorcontrib>Acosta, Daniel J.</creatorcontrib><creatorcontrib>Alexander, Bradley R.</creatorcontrib><creatorcontrib>Cole, Hannah O.</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Lynd, Nathaniel A.</creatorcontrib><creatorcontrib>Ellington, Andrew D.</creatorcontrib><creatorcontrib>Alper, Hal S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Hongyuan</au><au>Diaz, Daniel J.</au><au>Czarnecki, Natalie J.</au><au>Zhu, Congzhi</au><au>Kim, Wantae</au><au>Shroff, Raghav</au><au>Acosta, Daniel J.</au><au>Alexander, Bradley R.</au><au>Cole, Hannah O.</au><au>Zhang, Yan</au><au>Lynd, Nathaniel A.</au><au>Ellington, Andrew D.</au><au>Alper, Hal S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning-aided engineering of hydrolases for PET depolymerization</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2022-04-28</date><risdate>2022</risdate><volume>604</volume><issue>7907</issue><spage>662</spage><epage>667</epage><pages>662-667</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Plastic waste poses an ecological challenge 1 – 3 and enzymatic degradation offers one, potentially green and scalable, route for polyesters waste recycling 4 . Poly(ethylene terephthalate) (PET) accounts for 12% of global solid waste 5 , and a circular carbon economy for PET is theoretically attainable through rapid enzymatic depolymerization followed by repolymerization or conversion/valorization into other products 6 – 10 . Application of PET hydrolases, however, has been hampered by their lack of robustness to pH and temperature ranges, slow reaction rates and inability to directly use untreated postconsumer plastics 11 . Here, we use a structure-based, machine learning algorithm to engineer a robust and active PET hydrolase. Our mutant and scaffold combination (FAST-PETase: functional, active, stable and tolerant PETase) contains five mutations compared to wild-type PETase (N233K/R224Q/S121E from prediction and D186H/R280A from scaffold) and shows superior PET-hydrolytic activity relative to both wild-type and engineered alternatives 12 between 30 and 50 °C and a range of pH levels. We demonstrate that untreated, postconsumer-PET from 51 different thermoformed products can all be almost completely degraded by FAST-PETase in 1 week. FAST-PETase can also depolymerize untreated, amorphous portions of a commercial water bottle and an entire thermally pretreated water bottle at 50 ºC. Finally, we demonstrate a closed-loop PET recycling process by using FAST-PETase and resynthesizing PET from the recovered monomers. Collectively, our results demonstrate a viable route for enzymatic plastic recycling at the industrial scale. Untreated, postconsumer-PET from 51 different thermoformed products can all be almost completely degraded by FAST-PETase in 1 week and PET can be resynthesized from the recovered monomers, demonstrating recycling at the industrial scale.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35478237</pmid><doi>10.1038/s41586-022-04599-z</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9170-1010</orcidid><orcidid>https://orcid.org/0000-0002-9360-5388</orcidid><orcidid>https://orcid.org/0000-0002-7891-2128</orcidid><orcidid>https://orcid.org/0000-0003-3010-5068</orcidid><orcidid>https://orcid.org/0000-0001-5950-536X</orcidid><orcidid>https://orcid.org/0000-0002-8246-8605</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2022-04, Vol.604 (7907), p.662-667
issn 0028-0836
1476-4687
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2656746094
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 631/181/735
631/61
639/301/923/1028
639/638/455
82/83
Algorithms
Amino acids
Circular economy
Crystal structure
Depolymerization
Enzymes
Humanities and Social Sciences
Hydrolase
Hydrolases - genetics
Hydrolases - metabolism
Hydrolysis
Learning algorithms
Machine Learning
Monomers
multidisciplinary
Mutation
Neural networks
pH effects
Plastic debris
Plastics
Plastics recycling
Polyester resins
Polyesters
Polyethylene terephthalate
Polyethylene Terephthalates - metabolism
Protein Engineering
Proteins
Recycling
Scaffolds
Science
Science (multidisciplinary)
Waste recycling
title Machine learning-aided engineering of hydrolases for PET depolymerization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A51%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning-aided%20engineering%20of%20hydrolases%20for%20PET%20depolymerization&rft.jtitle=Nature%20(London)&rft.au=Lu,%20Hongyuan&rft.date=2022-04-28&rft.volume=604&rft.issue=7907&rft.spage=662&rft.epage=667&rft.pages=662-667&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-022-04599-z&rft_dat=%3Cproquest_cross%3E2657443249%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2657443249&rft_id=info:pmid/35478237&rfr_iscdi=true