Dynamic formulation for geometrically-exact sandwich shells
Extending our recent works on geometrically-exact sandwich beams and one-dimensional plates [see e.g. Vu-Quoc and Ebcioǧlu (1995); Vu-Quoc and Deng (1995c); Vu-Quoc and Deng (1995a)], we present here a geometrically-exact sandwich shell theory, entirely in terms of stress resultants which accommodat...
Gespeichert in:
Veröffentlicht in: | International journal of solids and structures 1997-07, Vol.34 (20), p.2517-2548 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2548 |
---|---|
container_issue | 20 |
container_start_page | 2517 |
container_title | International journal of solids and structures |
container_volume | 34 |
creator | Vu-Quoc, L. Ebcioǧlu, I.K. Deng, H. |
description | Extending our recent works on geometrically-exact sandwich beams and one-dimensional plates [see e.g. Vu-Quoc and Ebcioǧlu (1995); Vu-Quoc and Deng (1995c); Vu-Quoc and Deng (1995a)], we present here a geometrically-exact sandwich shell theory, entirely in terms of stress resultants which accommodates finite deformations in membrane, bending, and transverse shear. The motion of the shell are referred directly to the inertial frame; the transverse fiber of the sandwich shell has a motion identical to that of a chain of three rigid links connected by revolute joints. An important approximated theory is developed from the general nonlinear equations, the classical linear theory is recovered by the consistent linearization. |
doi_str_mv | 10.1016/S0020-7683(96)00142-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26563494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768396001424</els_id><sourcerecordid>26563494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-e4669b44cc626851b0b68a7307f5c54086ad51b977c0c0958e20b2f21e67dff63</originalsourceid><addsrcrecordid>eNqFUEtLAzEQDqJgrf4EoQcRPaxOstnJBg8i9QkFD-o5ZLOJjeyjJlu1_97dtnj1NMPwffM9CDmmcEGB4uULAINEYJ6eSTwHoJwlfIeMaC5kwijHXTL6g-yTgxg_AICnEkbk6nbV6NqbiWtDvax059tm2Cfvtq1tF7zRVbVK7I823STqpvz2Zj6Jc1tV8ZDsOV1Fe7SdY_J2f_c6fUxmzw9P05tZYlIUXWI5oiw4NwYZ5hktoMBcixSEy0zGIUdd9lcphAEDMsstg4I5Ri2K0jlMx-R083cR2s-ljZ2qfTS9A93YdhkVwwxTLnkPzDZAE9oYg3VqEXytw0pRUENVal2VGnpQEtW6KjXwTrYCOvZ5XdCN8fGPzATQFAcf1xuY7cN-eRtUNN42xpY-WNOpsvX_CP0Cm_h8pA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26563494</pqid></control><display><type>article</type><title>Dynamic formulation for geometrically-exact sandwich shells</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Vu-Quoc, L. ; Ebcioǧlu, I.K. ; Deng, H.</creator><creatorcontrib>Vu-Quoc, L. ; Ebcioǧlu, I.K. ; Deng, H.</creatorcontrib><description>Extending our recent works on geometrically-exact sandwich beams and one-dimensional plates [see e.g. Vu-Quoc and Ebcioǧlu (1995); Vu-Quoc and Deng (1995c); Vu-Quoc and Deng (1995a)], we present here a geometrically-exact sandwich shell theory, entirely in terms of stress resultants which accommodates finite deformations in membrane, bending, and transverse shear. The motion of the shell are referred directly to the inertial frame; the transverse fiber of the sandwich shell has a motion identical to that of a chain of three rigid links connected by revolute joints. An important approximated theory is developed from the general nonlinear equations, the classical linear theory is recovered by the consistent linearization.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/S0020-7683(96)00142-4</identifier><identifier>CODEN: IJSOAD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Vibrations and mechanical waves</subject><ispartof>International journal of solids and structures, 1997-07, Vol.34 (20), p.2517-2548</ispartof><rights>1997</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-e4669b44cc626851b0b68a7307f5c54086ad51b977c0c0958e20b2f21e67dff63</citedby><cites>FETCH-LOGICAL-c367t-e4669b44cc626851b0b68a7307f5c54086ad51b977c0c0958e20b2f21e67dff63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0020-7683(96)00142-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2701366$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vu-Quoc, L.</creatorcontrib><creatorcontrib>Ebcioǧlu, I.K.</creatorcontrib><creatorcontrib>Deng, H.</creatorcontrib><title>Dynamic formulation for geometrically-exact sandwich shells</title><title>International journal of solids and structures</title><description>Extending our recent works on geometrically-exact sandwich beams and one-dimensional plates [see e.g. Vu-Quoc and Ebcioǧlu (1995); Vu-Quoc and Deng (1995c); Vu-Quoc and Deng (1995a)], we present here a geometrically-exact sandwich shell theory, entirely in terms of stress resultants which accommodates finite deformations in membrane, bending, and transverse shear. The motion of the shell are referred directly to the inertial frame; the transverse fiber of the sandwich shell has a motion identical to that of a chain of three rigid links connected by revolute joints. An important approximated theory is developed from the general nonlinear equations, the classical linear theory is recovered by the consistent linearization.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Vibrations and mechanical waves</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFUEtLAzEQDqJgrf4EoQcRPaxOstnJBg8i9QkFD-o5ZLOJjeyjJlu1_97dtnj1NMPwffM9CDmmcEGB4uULAINEYJ6eSTwHoJwlfIeMaC5kwijHXTL6g-yTgxg_AICnEkbk6nbV6NqbiWtDvax059tm2Cfvtq1tF7zRVbVK7I823STqpvz2Zj6Jc1tV8ZDsOV1Fe7SdY_J2f_c6fUxmzw9P05tZYlIUXWI5oiw4NwYZ5hktoMBcixSEy0zGIUdd9lcphAEDMsstg4I5Ri2K0jlMx-R083cR2s-ljZ2qfTS9A93YdhkVwwxTLnkPzDZAE9oYg3VqEXytw0pRUENVal2VGnpQEtW6KjXwTrYCOvZ5XdCN8fGPzATQFAcf1xuY7cN-eRtUNN42xpY-WNOpsvX_CP0Cm_h8pA</recordid><startdate>19970701</startdate><enddate>19970701</enddate><creator>Vu-Quoc, L.</creator><creator>Ebcioǧlu, I.K.</creator><creator>Deng, H.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>19970701</creationdate><title>Dynamic formulation for geometrically-exact sandwich shells</title><author>Vu-Quoc, L. ; Ebcioǧlu, I.K. ; Deng, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-e4669b44cc626851b0b68a7307f5c54086ad51b977c0c0958e20b2f21e67dff63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Vibrations and mechanical waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vu-Quoc, L.</creatorcontrib><creatorcontrib>Ebcioǧlu, I.K.</creatorcontrib><creatorcontrib>Deng, H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vu-Quoc, L.</au><au>Ebcioǧlu, I.K.</au><au>Deng, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic formulation for geometrically-exact sandwich shells</atitle><jtitle>International journal of solids and structures</jtitle><date>1997-07-01</date><risdate>1997</risdate><volume>34</volume><issue>20</issue><spage>2517</spage><epage>2548</epage><pages>2517-2548</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><coden>IJSOAD</coden><abstract>Extending our recent works on geometrically-exact sandwich beams and one-dimensional plates [see e.g. Vu-Quoc and Ebcioǧlu (1995); Vu-Quoc and Deng (1995c); Vu-Quoc and Deng (1995a)], we present here a geometrically-exact sandwich shell theory, entirely in terms of stress resultants which accommodates finite deformations in membrane, bending, and transverse shear. The motion of the shell are referred directly to the inertial frame; the transverse fiber of the sandwich shell has a motion identical to that of a chain of three rigid links connected by revolute joints. An important approximated theory is developed from the general nonlinear equations, the classical linear theory is recovered by the consistent linearization.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0020-7683(96)00142-4</doi><tpages>32</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7683 |
ispartof | International journal of solids and structures, 1997-07, Vol.34 (20), p.2517-2548 |
issn | 0020-7683 1879-2146 |
language | eng |
recordid | cdi_proquest_miscellaneous_26563494 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Exact sciences and technology Fundamental areas of phenomenology (including applications) Physics Solid mechanics Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) Vibrations and mechanical waves |
title | Dynamic formulation for geometrically-exact sandwich shells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A02%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20formulation%20for%20geometrically-exact%20sandwich%20shells&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Vu-Quoc,%20L.&rft.date=1997-07-01&rft.volume=34&rft.issue=20&rft.spage=2517&rft.epage=2548&rft.pages=2517-2548&rft.issn=0020-7683&rft.eissn=1879-2146&rft.coden=IJSOAD&rft_id=info:doi/10.1016/S0020-7683(96)00142-4&rft_dat=%3Cproquest_cross%3E26563494%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26563494&rft_id=info:pmid/&rft_els_id=S0020768396001424&rfr_iscdi=true |