Dynamic formulation for geometrically-exact sandwich shells

Extending our recent works on geometrically-exact sandwich beams and one-dimensional plates [see e.g. Vu-Quoc and Ebcioǧlu (1995); Vu-Quoc and Deng (1995c); Vu-Quoc and Deng (1995a)], we present here a geometrically-exact sandwich shell theory, entirely in terms of stress resultants which accommodat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 1997-07, Vol.34 (20), p.2517-2548
Hauptverfasser: Vu-Quoc, L., Ebcioǧlu, I.K., Deng, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2548
container_issue 20
container_start_page 2517
container_title International journal of solids and structures
container_volume 34
creator Vu-Quoc, L.
Ebcioǧlu, I.K.
Deng, H.
description Extending our recent works on geometrically-exact sandwich beams and one-dimensional plates [see e.g. Vu-Quoc and Ebcioǧlu (1995); Vu-Quoc and Deng (1995c); Vu-Quoc and Deng (1995a)], we present here a geometrically-exact sandwich shell theory, entirely in terms of stress resultants which accommodates finite deformations in membrane, bending, and transverse shear. The motion of the shell are referred directly to the inertial frame; the transverse fiber of the sandwich shell has a motion identical to that of a chain of three rigid links connected by revolute joints. An important approximated theory is developed from the general nonlinear equations, the classical linear theory is recovered by the consistent linearization.
doi_str_mv 10.1016/S0020-7683(96)00142-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26563494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768396001424</els_id><sourcerecordid>26563494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-e4669b44cc626851b0b68a7307f5c54086ad51b977c0c0958e20b2f21e67dff63</originalsourceid><addsrcrecordid>eNqFUEtLAzEQDqJgrf4EoQcRPaxOstnJBg8i9QkFD-o5ZLOJjeyjJlu1_97dtnj1NMPwffM9CDmmcEGB4uULAINEYJ6eSTwHoJwlfIeMaC5kwijHXTL6g-yTgxg_AICnEkbk6nbV6NqbiWtDvax059tm2Cfvtq1tF7zRVbVK7I823STqpvz2Zj6Jc1tV8ZDsOV1Fe7SdY_J2f_c6fUxmzw9P05tZYlIUXWI5oiw4NwYZ5hktoMBcixSEy0zGIUdd9lcphAEDMsstg4I5Ri2K0jlMx-R083cR2s-ljZ2qfTS9A93YdhkVwwxTLnkPzDZAE9oYg3VqEXytw0pRUENVal2VGnpQEtW6KjXwTrYCOvZ5XdCN8fGPzATQFAcf1xuY7cN-eRtUNN42xpY-WNOpsvX_CP0Cm_h8pA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26563494</pqid></control><display><type>article</type><title>Dynamic formulation for geometrically-exact sandwich shells</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Vu-Quoc, L. ; Ebcioǧlu, I.K. ; Deng, H.</creator><creatorcontrib>Vu-Quoc, L. ; Ebcioǧlu, I.K. ; Deng, H.</creatorcontrib><description>Extending our recent works on geometrically-exact sandwich beams and one-dimensional plates [see e.g. Vu-Quoc and Ebcioǧlu (1995); Vu-Quoc and Deng (1995c); Vu-Quoc and Deng (1995a)], we present here a geometrically-exact sandwich shell theory, entirely in terms of stress resultants which accommodates finite deformations in membrane, bending, and transverse shear. The motion of the shell are referred directly to the inertial frame; the transverse fiber of the sandwich shell has a motion identical to that of a chain of three rigid links connected by revolute joints. An important approximated theory is developed from the general nonlinear equations, the classical linear theory is recovered by the consistent linearization.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/S0020-7683(96)00142-4</identifier><identifier>CODEN: IJSOAD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Vibrations and mechanical waves</subject><ispartof>International journal of solids and structures, 1997-07, Vol.34 (20), p.2517-2548</ispartof><rights>1997</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-e4669b44cc626851b0b68a7307f5c54086ad51b977c0c0958e20b2f21e67dff63</citedby><cites>FETCH-LOGICAL-c367t-e4669b44cc626851b0b68a7307f5c54086ad51b977c0c0958e20b2f21e67dff63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0020-7683(96)00142-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2701366$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vu-Quoc, L.</creatorcontrib><creatorcontrib>Ebcioǧlu, I.K.</creatorcontrib><creatorcontrib>Deng, H.</creatorcontrib><title>Dynamic formulation for geometrically-exact sandwich shells</title><title>International journal of solids and structures</title><description>Extending our recent works on geometrically-exact sandwich beams and one-dimensional plates [see e.g. Vu-Quoc and Ebcioǧlu (1995); Vu-Quoc and Deng (1995c); Vu-Quoc and Deng (1995a)], we present here a geometrically-exact sandwich shell theory, entirely in terms of stress resultants which accommodates finite deformations in membrane, bending, and transverse shear. The motion of the shell are referred directly to the inertial frame; the transverse fiber of the sandwich shell has a motion identical to that of a chain of three rigid links connected by revolute joints. An important approximated theory is developed from the general nonlinear equations, the classical linear theory is recovered by the consistent linearization.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Vibrations and mechanical waves</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFUEtLAzEQDqJgrf4EoQcRPaxOstnJBg8i9QkFD-o5ZLOJjeyjJlu1_97dtnj1NMPwffM9CDmmcEGB4uULAINEYJ6eSTwHoJwlfIeMaC5kwijHXTL6g-yTgxg_AICnEkbk6nbV6NqbiWtDvax059tm2Cfvtq1tF7zRVbVK7I823STqpvz2Zj6Jc1tV8ZDsOV1Fe7SdY_J2f_c6fUxmzw9P05tZYlIUXWI5oiw4NwYZ5hktoMBcixSEy0zGIUdd9lcphAEDMsstg4I5Ri2K0jlMx-R083cR2s-ljZ2qfTS9A93YdhkVwwxTLnkPzDZAE9oYg3VqEXytw0pRUENVal2VGnpQEtW6KjXwTrYCOvZ5XdCN8fGPzATQFAcf1xuY7cN-eRtUNN42xpY-WNOpsvX_CP0Cm_h8pA</recordid><startdate>19970701</startdate><enddate>19970701</enddate><creator>Vu-Quoc, L.</creator><creator>Ebcioǧlu, I.K.</creator><creator>Deng, H.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>19970701</creationdate><title>Dynamic formulation for geometrically-exact sandwich shells</title><author>Vu-Quoc, L. ; Ebcioǧlu, I.K. ; Deng, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-e4669b44cc626851b0b68a7307f5c54086ad51b977c0c0958e20b2f21e67dff63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Vibrations and mechanical waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vu-Quoc, L.</creatorcontrib><creatorcontrib>Ebcioǧlu, I.K.</creatorcontrib><creatorcontrib>Deng, H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vu-Quoc, L.</au><au>Ebcioǧlu, I.K.</au><au>Deng, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic formulation for geometrically-exact sandwich shells</atitle><jtitle>International journal of solids and structures</jtitle><date>1997-07-01</date><risdate>1997</risdate><volume>34</volume><issue>20</issue><spage>2517</spage><epage>2548</epage><pages>2517-2548</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><coden>IJSOAD</coden><abstract>Extending our recent works on geometrically-exact sandwich beams and one-dimensional plates [see e.g. Vu-Quoc and Ebcioǧlu (1995); Vu-Quoc and Deng (1995c); Vu-Quoc and Deng (1995a)], we present here a geometrically-exact sandwich shell theory, entirely in terms of stress resultants which accommodates finite deformations in membrane, bending, and transverse shear. The motion of the shell are referred directly to the inertial frame; the transverse fiber of the sandwich shell has a motion identical to that of a chain of three rigid links connected by revolute joints. An important approximated theory is developed from the general nonlinear equations, the classical linear theory is recovered by the consistent linearization.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0020-7683(96)00142-4</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 1997-07, Vol.34 (20), p.2517-2548
issn 0020-7683
1879-2146
language eng
recordid cdi_proquest_miscellaneous_26563494
source ScienceDirect Journals (5 years ago - present)
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Vibrations and mechanical waves
title Dynamic formulation for geometrically-exact sandwich shells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A02%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20formulation%20for%20geometrically-exact%20sandwich%20shells&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Vu-Quoc,%20L.&rft.date=1997-07-01&rft.volume=34&rft.issue=20&rft.spage=2517&rft.epage=2548&rft.pages=2517-2548&rft.issn=0020-7683&rft.eissn=1879-2146&rft.coden=IJSOAD&rft_id=info:doi/10.1016/S0020-7683(96)00142-4&rft_dat=%3Cproquest_cross%3E26563494%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26563494&rft_id=info:pmid/&rft_els_id=S0020768396001424&rfr_iscdi=true