Emission bandwidth control on a two-dimensional superlattice microcavity array
Narrowband thermal emission at high temperatures is required for various thermal energy systems. However, the large lossy energy of refractory metals induces a broad bandwidth emission. Here, we demonstrated a two-dimensional (2D) superlattice microcavity array on refractory metals to control the em...
Gespeichert in:
Veröffentlicht in: | Optics express 2022-04, Vol.30 (8), p.13839-13846 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13846 |
---|---|
container_issue | 8 |
container_start_page | 13839 |
container_title | Optics express |
container_volume | 30 |
creator | Liu, Zhen Shimizu, Makoto Yugami, Hiroo |
description | Narrowband thermal emission at high temperatures is required for various thermal energy systems. However, the large lossy energy of refractory metals induces a broad bandwidth emission. Here, we demonstrated a two-dimensional (2D) superlattice microcavity array on refractory metals to control the emission bandwidth. A hybrid resonance mode was obtained by coupling the standing-wave modes and propagating surface-wave modes. The bandwidth emission was controlled by varying the superlattice microcavity array resulting from the change in electric field (E-field) concentration. The quality factor (Q-factor) improved by more than 3 times compared to that of a single-lattice array. A narrower band emission originating from the hybrid mode was observed and analyzed experimentally. This novel surface-relief microstructure method can be used to control the emission bandwidth of thermal emitters used in thermophotovoltaic (TPV) systems and other high-temperature thermal energy systems. |
doi_str_mv | 10.1364/oe.455722 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2656201146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2656201146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-83490b8c83cc58d86420127c21d5fa298a4799d3b357ca7233df4c79ea71c52e3</originalsourceid><addsrcrecordid>eNpNkE1LAzEURYMotlYX_gGZpS6m5nOSWUqpH1DsRtchk2QwMjOpScbSf29Kq7h6j8fhct8B4BrBOSIVvfd2ThnjGJ-AKYI1LSkU_PTfPgEXMX5CiCiv-TmYEEY5roWYgtdl72J0figaNZitM-mj0H5IwXdFPqoibX1pXG-HPaS6Io4bGzqVktO26J0OXqtvl3aFCkHtLsFZq7por45zBt4fl2-L53K1fnpZPKxKTUSVSkFoDRuhBdGaCSMqiiHCXGNkWKtyM5WL1oY0hHGtOCbEtFTz2iqONMOWzMDtIXcT_NdoY5L5DW27Tg3Wj1HiilU5EtEqo3cHNFeNMdhWboLrVdhJBOVen1wv5UFfZm-OsWPTW_NH_voiP4TSaqo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656201146</pqid></control><display><type>article</type><title>Emission bandwidth control on a two-dimensional superlattice microcavity array</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Zhen ; Shimizu, Makoto ; Yugami, Hiroo</creator><creatorcontrib>Liu, Zhen ; Shimizu, Makoto ; Yugami, Hiroo</creatorcontrib><description>Narrowband thermal emission at high temperatures is required for various thermal energy systems. However, the large lossy energy of refractory metals induces a broad bandwidth emission. Here, we demonstrated a two-dimensional (2D) superlattice microcavity array on refractory metals to control the emission bandwidth. A hybrid resonance mode was obtained by coupling the standing-wave modes and propagating surface-wave modes. The bandwidth emission was controlled by varying the superlattice microcavity array resulting from the change in electric field (E-field) concentration. The quality factor (Q-factor) improved by more than 3 times compared to that of a single-lattice array. A narrower band emission originating from the hybrid mode was observed and analyzed experimentally. This novel surface-relief microstructure method can be used to control the emission bandwidth of thermal emitters used in thermophotovoltaic (TPV) systems and other high-temperature thermal energy systems.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/oe.455722</identifier><identifier>PMID: 35472988</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2022-04, Vol.30 (8), p.13839-13846</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-83490b8c83cc58d86420127c21d5fa298a4799d3b357ca7233df4c79ea71c52e3</citedby><cites>FETCH-LOGICAL-c386t-83490b8c83cc58d86420127c21d5fa298a4799d3b357ca7233df4c79ea71c52e3</cites><orcidid>0000-0002-6094-8827 ; 0000-0001-5459-595X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35472988$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Zhen</creatorcontrib><creatorcontrib>Shimizu, Makoto</creatorcontrib><creatorcontrib>Yugami, Hiroo</creatorcontrib><title>Emission bandwidth control on a two-dimensional superlattice microcavity array</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Narrowband thermal emission at high temperatures is required for various thermal energy systems. However, the large lossy energy of refractory metals induces a broad bandwidth emission. Here, we demonstrated a two-dimensional (2D) superlattice microcavity array on refractory metals to control the emission bandwidth. A hybrid resonance mode was obtained by coupling the standing-wave modes and propagating surface-wave modes. The bandwidth emission was controlled by varying the superlattice microcavity array resulting from the change in electric field (E-field) concentration. The quality factor (Q-factor) improved by more than 3 times compared to that of a single-lattice array. A narrower band emission originating from the hybrid mode was observed and analyzed experimentally. This novel surface-relief microstructure method can be used to control the emission bandwidth of thermal emitters used in thermophotovoltaic (TPV) systems and other high-temperature thermal energy systems.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEURYMotlYX_gGZpS6m5nOSWUqpH1DsRtchk2QwMjOpScbSf29Kq7h6j8fhct8B4BrBOSIVvfd2ThnjGJ-AKYI1LSkU_PTfPgEXMX5CiCiv-TmYEEY5roWYgtdl72J0figaNZitM-mj0H5IwXdFPqoibX1pXG-HPaS6Io4bGzqVktO26J0OXqtvl3aFCkHtLsFZq7por45zBt4fl2-L53K1fnpZPKxKTUSVSkFoDRuhBdGaCSMqiiHCXGNkWKtyM5WL1oY0hHGtOCbEtFTz2iqONMOWzMDtIXcT_NdoY5L5DW27Tg3Wj1HiilU5EtEqo3cHNFeNMdhWboLrVdhJBOVen1wv5UFfZm-OsWPTW_NH_voiP4TSaqo</recordid><startdate>20220411</startdate><enddate>20220411</enddate><creator>Liu, Zhen</creator><creator>Shimizu, Makoto</creator><creator>Yugami, Hiroo</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6094-8827</orcidid><orcidid>https://orcid.org/0000-0001-5459-595X</orcidid></search><sort><creationdate>20220411</creationdate><title>Emission bandwidth control on a two-dimensional superlattice microcavity array</title><author>Liu, Zhen ; Shimizu, Makoto ; Yugami, Hiroo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-83490b8c83cc58d86420127c21d5fa298a4799d3b357ca7233df4c79ea71c52e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhen</creatorcontrib><creatorcontrib>Shimizu, Makoto</creatorcontrib><creatorcontrib>Yugami, Hiroo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhen</au><au>Shimizu, Makoto</au><au>Yugami, Hiroo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emission bandwidth control on a two-dimensional superlattice microcavity array</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2022-04-11</date><risdate>2022</risdate><volume>30</volume><issue>8</issue><spage>13839</spage><epage>13846</epage><pages>13839-13846</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Narrowband thermal emission at high temperatures is required for various thermal energy systems. However, the large lossy energy of refractory metals induces a broad bandwidth emission. Here, we demonstrated a two-dimensional (2D) superlattice microcavity array on refractory metals to control the emission bandwidth. A hybrid resonance mode was obtained by coupling the standing-wave modes and propagating surface-wave modes. The bandwidth emission was controlled by varying the superlattice microcavity array resulting from the change in electric field (E-field) concentration. The quality factor (Q-factor) improved by more than 3 times compared to that of a single-lattice array. A narrower band emission originating from the hybrid mode was observed and analyzed experimentally. This novel surface-relief microstructure method can be used to control the emission bandwidth of thermal emitters used in thermophotovoltaic (TPV) systems and other high-temperature thermal energy systems.</abstract><cop>United States</cop><pmid>35472988</pmid><doi>10.1364/oe.455722</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6094-8827</orcidid><orcidid>https://orcid.org/0000-0001-5459-595X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2022-04, Vol.30 (8), p.13839-13846 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_proquest_miscellaneous_2656201146 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
title | Emission bandwidth control on a two-dimensional superlattice microcavity array |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A31%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emission%20bandwidth%20control%20on%20a%20two-dimensional%20superlattice%20microcavity%20array&rft.jtitle=Optics%20express&rft.au=Liu,%20Zhen&rft.date=2022-04-11&rft.volume=30&rft.issue=8&rft.spage=13839&rft.epage=13846&rft.pages=13839-13846&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/oe.455722&rft_dat=%3Cproquest_cross%3E2656201146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656201146&rft_id=info:pmid/35472988&rfr_iscdi=true |