Emission bandwidth control on a two-dimensional superlattice microcavity array

Narrowband thermal emission at high temperatures is required for various thermal energy systems. However, the large lossy energy of refractory metals induces a broad bandwidth emission. Here, we demonstrated a two-dimensional (2D) superlattice microcavity array on refractory metals to control the em...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2022-04, Vol.30 (8), p.13839-13846
Hauptverfasser: Liu, Zhen, Shimizu, Makoto, Yugami, Hiroo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13846
container_issue 8
container_start_page 13839
container_title Optics express
container_volume 30
creator Liu, Zhen
Shimizu, Makoto
Yugami, Hiroo
description Narrowband thermal emission at high temperatures is required for various thermal energy systems. However, the large lossy energy of refractory metals induces a broad bandwidth emission. Here, we demonstrated a two-dimensional (2D) superlattice microcavity array on refractory metals to control the emission bandwidth. A hybrid resonance mode was obtained by coupling the standing-wave modes and propagating surface-wave modes. The bandwidth emission was controlled by varying the superlattice microcavity array resulting from the change in electric field (E-field) concentration. The quality factor (Q-factor) improved by more than 3 times compared to that of a single-lattice array. A narrower band emission originating from the hybrid mode was observed and analyzed experimentally. This novel surface-relief microstructure method can be used to control the emission bandwidth of thermal emitters used in thermophotovoltaic (TPV) systems and other high-temperature thermal energy systems.
doi_str_mv 10.1364/oe.455722
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2656201146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2656201146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-83490b8c83cc58d86420127c21d5fa298a4799d3b357ca7233df4c79ea71c52e3</originalsourceid><addsrcrecordid>eNpNkE1LAzEURYMotlYX_gGZpS6m5nOSWUqpH1DsRtchk2QwMjOpScbSf29Kq7h6j8fhct8B4BrBOSIVvfd2ThnjGJ-AKYI1LSkU_PTfPgEXMX5CiCiv-TmYEEY5roWYgtdl72J0figaNZitM-mj0H5IwXdFPqoibX1pXG-HPaS6Io4bGzqVktO26J0OXqtvl3aFCkHtLsFZq7por45zBt4fl2-L53K1fnpZPKxKTUSVSkFoDRuhBdGaCSMqiiHCXGNkWKtyM5WL1oY0hHGtOCbEtFTz2iqONMOWzMDtIXcT_NdoY5L5DW27Tg3Wj1HiilU5EtEqo3cHNFeNMdhWboLrVdhJBOVen1wv5UFfZm-OsWPTW_NH_voiP4TSaqo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656201146</pqid></control><display><type>article</type><title>Emission bandwidth control on a two-dimensional superlattice microcavity array</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Zhen ; Shimizu, Makoto ; Yugami, Hiroo</creator><creatorcontrib>Liu, Zhen ; Shimizu, Makoto ; Yugami, Hiroo</creatorcontrib><description>Narrowband thermal emission at high temperatures is required for various thermal energy systems. However, the large lossy energy of refractory metals induces a broad bandwidth emission. Here, we demonstrated a two-dimensional (2D) superlattice microcavity array on refractory metals to control the emission bandwidth. A hybrid resonance mode was obtained by coupling the standing-wave modes and propagating surface-wave modes. The bandwidth emission was controlled by varying the superlattice microcavity array resulting from the change in electric field (E-field) concentration. The quality factor (Q-factor) improved by more than 3 times compared to that of a single-lattice array. A narrower band emission originating from the hybrid mode was observed and analyzed experimentally. This novel surface-relief microstructure method can be used to control the emission bandwidth of thermal emitters used in thermophotovoltaic (TPV) systems and other high-temperature thermal energy systems.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/oe.455722</identifier><identifier>PMID: 35472988</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2022-04, Vol.30 (8), p.13839-13846</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-83490b8c83cc58d86420127c21d5fa298a4799d3b357ca7233df4c79ea71c52e3</citedby><cites>FETCH-LOGICAL-c386t-83490b8c83cc58d86420127c21d5fa298a4799d3b357ca7233df4c79ea71c52e3</cites><orcidid>0000-0002-6094-8827 ; 0000-0001-5459-595X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35472988$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Zhen</creatorcontrib><creatorcontrib>Shimizu, Makoto</creatorcontrib><creatorcontrib>Yugami, Hiroo</creatorcontrib><title>Emission bandwidth control on a two-dimensional superlattice microcavity array</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Narrowband thermal emission at high temperatures is required for various thermal energy systems. However, the large lossy energy of refractory metals induces a broad bandwidth emission. Here, we demonstrated a two-dimensional (2D) superlattice microcavity array on refractory metals to control the emission bandwidth. A hybrid resonance mode was obtained by coupling the standing-wave modes and propagating surface-wave modes. The bandwidth emission was controlled by varying the superlattice microcavity array resulting from the change in electric field (E-field) concentration. The quality factor (Q-factor) improved by more than 3 times compared to that of a single-lattice array. A narrower band emission originating from the hybrid mode was observed and analyzed experimentally. This novel surface-relief microstructure method can be used to control the emission bandwidth of thermal emitters used in thermophotovoltaic (TPV) systems and other high-temperature thermal energy systems.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEURYMotlYX_gGZpS6m5nOSWUqpH1DsRtchk2QwMjOpScbSf29Kq7h6j8fhct8B4BrBOSIVvfd2ThnjGJ-AKYI1LSkU_PTfPgEXMX5CiCiv-TmYEEY5roWYgtdl72J0figaNZitM-mj0H5IwXdFPqoibX1pXG-HPaS6Io4bGzqVktO26J0OXqtvl3aFCkHtLsFZq7por45zBt4fl2-L53K1fnpZPKxKTUSVSkFoDRuhBdGaCSMqiiHCXGNkWKtyM5WL1oY0hHGtOCbEtFTz2iqONMOWzMDtIXcT_NdoY5L5DW27Tg3Wj1HiilU5EtEqo3cHNFeNMdhWboLrVdhJBOVen1wv5UFfZm-OsWPTW_NH_voiP4TSaqo</recordid><startdate>20220411</startdate><enddate>20220411</enddate><creator>Liu, Zhen</creator><creator>Shimizu, Makoto</creator><creator>Yugami, Hiroo</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6094-8827</orcidid><orcidid>https://orcid.org/0000-0001-5459-595X</orcidid></search><sort><creationdate>20220411</creationdate><title>Emission bandwidth control on a two-dimensional superlattice microcavity array</title><author>Liu, Zhen ; Shimizu, Makoto ; Yugami, Hiroo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-83490b8c83cc58d86420127c21d5fa298a4799d3b357ca7233df4c79ea71c52e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhen</creatorcontrib><creatorcontrib>Shimizu, Makoto</creatorcontrib><creatorcontrib>Yugami, Hiroo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhen</au><au>Shimizu, Makoto</au><au>Yugami, Hiroo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emission bandwidth control on a two-dimensional superlattice microcavity array</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2022-04-11</date><risdate>2022</risdate><volume>30</volume><issue>8</issue><spage>13839</spage><epage>13846</epage><pages>13839-13846</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Narrowband thermal emission at high temperatures is required for various thermal energy systems. However, the large lossy energy of refractory metals induces a broad bandwidth emission. Here, we demonstrated a two-dimensional (2D) superlattice microcavity array on refractory metals to control the emission bandwidth. A hybrid resonance mode was obtained by coupling the standing-wave modes and propagating surface-wave modes. The bandwidth emission was controlled by varying the superlattice microcavity array resulting from the change in electric field (E-field) concentration. The quality factor (Q-factor) improved by more than 3 times compared to that of a single-lattice array. A narrower band emission originating from the hybrid mode was observed and analyzed experimentally. This novel surface-relief microstructure method can be used to control the emission bandwidth of thermal emitters used in thermophotovoltaic (TPV) systems and other high-temperature thermal energy systems.</abstract><cop>United States</cop><pmid>35472988</pmid><doi>10.1364/oe.455722</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6094-8827</orcidid><orcidid>https://orcid.org/0000-0001-5459-595X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2022-04, Vol.30 (8), p.13839-13846
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_2656201146
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
title Emission bandwidth control on a two-dimensional superlattice microcavity array
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A31%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emission%20bandwidth%20control%20on%20a%20two-dimensional%20superlattice%20microcavity%20array&rft.jtitle=Optics%20express&rft.au=Liu,%20Zhen&rft.date=2022-04-11&rft.volume=30&rft.issue=8&rft.spage=13839&rft.epage=13846&rft.pages=13839-13846&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/oe.455722&rft_dat=%3Cproquest_cross%3E2656201146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656201146&rft_id=info:pmid/35472988&rfr_iscdi=true