Lentiviral expression of calpain-1 C2-like domain peptide prevents glutamate-induced cell death in mouse hippocampal neuronal HT22 cells

Glutamate neurotoxicity is involved in neurodegenerative diseases, including Alzheimer’s and Parkinson’s diseases. Excess glutamate causes caspase-independent programmed cell death via oxidative stress and calcium influx. Our previous study showed that calpain-1 localizes to both the cytoplasm and m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:In vitro cellular & developmental biology. Animal 2022-04, Vol.58 (4), p.289-294
Hauptverfasser: Oikawa, Takenori, Fukuda, Tomokazu, Yamashita, Tetsuro, Tomita, Hiroshi, Ozaki, Taku
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glutamate neurotoxicity is involved in neurodegenerative diseases, including Alzheimer’s and Parkinson’s diseases. Excess glutamate causes caspase-independent programmed cell death via oxidative stress and calcium influx. Our previous study showed that calpain-1 localizes to both the cytoplasm and mitochondria, where apoptosis-inducing factor (AIF) is cleaved by calpain-1 and translocates to the nucleus to induce DNA fragmentation. The autoinhibitory region of calpain-1 conjugated with the cell-penetrating peptide HIV1-Tat (namely Tat-μCL) specifically prevents the activity of mitochondrial calpain-1 and attenuates neuronal cell death in animal models of retinitis pigmentosa, as well as glutamate-induced cell death in mouse hippocampal HT22 cells. In the present study, we constructed a lentiviral vector expressing the Tat-μCL peptide and evaluated its protective effect against glutamate-induced cell death in HT22 cells. Lentiviral transduction with Tat-μCL significantly suppressed glutamate-induced nuclear translocation of AIF and DNA fragmentation. The findings of the present study suggest that the stable expression of Tat-μCL may be a potential gene therapy modality for neurodegenerative diseases.
ISSN:1071-2690
1543-706X
DOI:10.1007/s11626-022-00683-w