Reversible Ratiometric Electrochemiluminescence Biosensor Based on DNAzyme Regulated Resonance Energy Transfer for Myocardial miRNA Detection

Myocardial miRNAs in peripheral blood are closely related to the pathogenic process of myocardial infarction. Rapid identification and accurate quantification of myocardial miRNAs are of great significance to clinical interventions for treating cardiovascular lesions. Therefore, a ratiometric electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2022-05, Vol.94 (19), p.7035-7040
Hauptverfasser: Sun, Yudie, Fang, La, Han, Yunxiang, Feng, Aobo, Liu, Shengjun, Zhang, Kui, Xu, Jing-Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7040
container_issue 19
container_start_page 7035
container_title Analytical chemistry (Washington)
container_volume 94
creator Sun, Yudie
Fang, La
Han, Yunxiang
Feng, Aobo
Liu, Shengjun
Zhang, Kui
Xu, Jing-Juan
description Myocardial miRNAs in peripheral blood are closely related to the pathogenic process of myocardial infarction. Rapid identification and accurate quantification of myocardial miRNAs are of great significance to clinical interventions for treating cardiovascular lesions. Therefore, a ratiometric electrochemiluminescence (ECL) biosensor integrating DNAzyme with a resonance energy transfer (RET) system was designed to detect myocardial miRNA. The dual-signal system was composed of rA marked substrate strand functionalized CdTe quantum dots (QDs) as reductive–oxidative (R–O) emitters and Cy5-labeled strand-functionalized Ru­(bpy)3 2+-filled silica nanoparticles (RuSi NPs) as oxidative–reductive (O–R) emitters. In the presence of target miRNA, DNAzyme was activated to cut substrate strands on the CdTe QDs and release triggers for opening hairpin probes. Then, the Cy5 molecule-labeled hairpin DNA on the RuSi NPs was opened to introduce Cy5 molecules and RuSi NPs into the system. The R–O ECL was quenched by ECL-RET between CdTe QDs and Cy5 molecules and the O–R ECL was introduced by the RuSi NPs. In this way, based on the simultaneous changing of the ECL signal, the dual-potential dynamic signal ratiometric ECL sensing platform was developed. By measuring the ratio of O–R ECL signal to R–O ECL signal, the concentration of miRNA-499 was accurately quantified in the range of 10 fM to 10 nM, and the detection limit was as low as 2.44 fM (S/N = 3). This DNAzyme guided dual-potential ratiometric ECL method provides a sensitive and reliable method for myocardial miRNA detection, and it has great potential in clinical diagnosis and treatment.
doi_str_mv 10.1021/acs.analchem.2c00195
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2655560858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655560858</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-c4fc0328456651d16527d0222a6092241878cb511908a9cad7f580e0ff004fde3</originalsourceid><addsrcrecordid>eNp9kc1q3DAURkVpaaZp36AUQTfdeHolW7JmOUmmP5CmMKRro5GvUgVZSiU7MH2HvHNkZpJFF10JLuf7LrqHkPcMlgw4-6xNXuqgvfmNw5IbALYSL8iCCQ6VVIq_JAsAqCveApyQNznfFoQBk6_JSS0a2aqaL8jDFu8xZbfzSLd6dHHAMTlDNx7NmOJc7vw0uIDZYDBIz1zMGHJM9Exn7GkM9OJq_Xc_lDzeTF6PZbjFHIOe8U3AdLOn10mHbDFRW4I_9tHo1Dvt6eC2V2t6gWPZ5mJ4S15Z7TO-O76n5NeXzfX5t-ry59fv5-vLStetHCvTWAM1V42QUrCeScHbHjjnWsKK84apVpmdYGwFSq-M7lsrFCBYC9DYHutT8unQe5finwnz2A2u_M97HTBOueNSCCFBCVXQj_-gt3FK5e4zVY4oOFOyUM2BMinmnNB2d8kNOu07Bt2sqyu6uidd3VFXiX04lk-7Afvn0JOfAsABmOPPi__b-Qj3waVL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667852186</pqid></control><display><type>article</type><title>Reversible Ratiometric Electrochemiluminescence Biosensor Based on DNAzyme Regulated Resonance Energy Transfer for Myocardial miRNA Detection</title><source>ACS Publications</source><creator>Sun, Yudie ; Fang, La ; Han, Yunxiang ; Feng, Aobo ; Liu, Shengjun ; Zhang, Kui ; Xu, Jing-Juan</creator><creatorcontrib>Sun, Yudie ; Fang, La ; Han, Yunxiang ; Feng, Aobo ; Liu, Shengjun ; Zhang, Kui ; Xu, Jing-Juan</creatorcontrib><description>Myocardial miRNAs in peripheral blood are closely related to the pathogenic process of myocardial infarction. Rapid identification and accurate quantification of myocardial miRNAs are of great significance to clinical interventions for treating cardiovascular lesions. Therefore, a ratiometric electrochemiluminescence (ECL) biosensor integrating DNAzyme with a resonance energy transfer (RET) system was designed to detect myocardial miRNA. The dual-signal system was composed of rA marked substrate strand functionalized CdTe quantum dots (QDs) as reductive–oxidative (R–O) emitters and Cy5-labeled strand-functionalized Ru­(bpy)3 2+-filled silica nanoparticles (RuSi NPs) as oxidative–reductive (O–R) emitters. In the presence of target miRNA, DNAzyme was activated to cut substrate strands on the CdTe QDs and release triggers for opening hairpin probes. Then, the Cy5 molecule-labeled hairpin DNA on the RuSi NPs was opened to introduce Cy5 molecules and RuSi NPs into the system. The R–O ECL was quenched by ECL-RET between CdTe QDs and Cy5 molecules and the O–R ECL was introduced by the RuSi NPs. In this way, based on the simultaneous changing of the ECL signal, the dual-potential dynamic signal ratiometric ECL sensing platform was developed. By measuring the ratio of O–R ECL signal to R–O ECL signal, the concentration of miRNA-499 was accurately quantified in the range of 10 fM to 10 nM, and the detection limit was as low as 2.44 fM (S/N = 3). This DNAzyme guided dual-potential ratiometric ECL method provides a sensitive and reliable method for myocardial miRNA detection, and it has great potential in clinical diagnosis and treatment.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.2c00195</identifier><identifier>PMID: 35467832</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biosensors ; Cadmium tellurides ; Chemistry ; DNA probes ; Electrochemiluminescence ; Emitters ; Energy transfer ; miRNA ; Myocardial infarction ; Nanoparticles ; Peripheral blood ; Quantum dots ; Resonance ; Silica ; Substrates</subject><ispartof>Analytical chemistry (Washington), 2022-05, Vol.94 (19), p.7035-7040</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society May 17, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-c4fc0328456651d16527d0222a6092241878cb511908a9cad7f580e0ff004fde3</citedby><cites>FETCH-LOGICAL-a376t-c4fc0328456651d16527d0222a6092241878cb511908a9cad7f580e0ff004fde3</cites><orcidid>0000-0002-1053-7472 ; 0000-0001-9579-9318 ; 0000-0002-5634-9952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.2c00195$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.2c00195$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35467832$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Yudie</creatorcontrib><creatorcontrib>Fang, La</creatorcontrib><creatorcontrib>Han, Yunxiang</creatorcontrib><creatorcontrib>Feng, Aobo</creatorcontrib><creatorcontrib>Liu, Shengjun</creatorcontrib><creatorcontrib>Zhang, Kui</creatorcontrib><creatorcontrib>Xu, Jing-Juan</creatorcontrib><title>Reversible Ratiometric Electrochemiluminescence Biosensor Based on DNAzyme Regulated Resonance Energy Transfer for Myocardial miRNA Detection</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Myocardial miRNAs in peripheral blood are closely related to the pathogenic process of myocardial infarction. Rapid identification and accurate quantification of myocardial miRNAs are of great significance to clinical interventions for treating cardiovascular lesions. Therefore, a ratiometric electrochemiluminescence (ECL) biosensor integrating DNAzyme with a resonance energy transfer (RET) system was designed to detect myocardial miRNA. The dual-signal system was composed of rA marked substrate strand functionalized CdTe quantum dots (QDs) as reductive–oxidative (R–O) emitters and Cy5-labeled strand-functionalized Ru­(bpy)3 2+-filled silica nanoparticles (RuSi NPs) as oxidative–reductive (O–R) emitters. In the presence of target miRNA, DNAzyme was activated to cut substrate strands on the CdTe QDs and release triggers for opening hairpin probes. Then, the Cy5 molecule-labeled hairpin DNA on the RuSi NPs was opened to introduce Cy5 molecules and RuSi NPs into the system. The R–O ECL was quenched by ECL-RET between CdTe QDs and Cy5 molecules and the O–R ECL was introduced by the RuSi NPs. In this way, based on the simultaneous changing of the ECL signal, the dual-potential dynamic signal ratiometric ECL sensing platform was developed. By measuring the ratio of O–R ECL signal to R–O ECL signal, the concentration of miRNA-499 was accurately quantified in the range of 10 fM to 10 nM, and the detection limit was as low as 2.44 fM (S/N = 3). This DNAzyme guided dual-potential ratiometric ECL method provides a sensitive and reliable method for myocardial miRNA detection, and it has great potential in clinical diagnosis and treatment.</description><subject>Biosensors</subject><subject>Cadmium tellurides</subject><subject>Chemistry</subject><subject>DNA probes</subject><subject>Electrochemiluminescence</subject><subject>Emitters</subject><subject>Energy transfer</subject><subject>miRNA</subject><subject>Myocardial infarction</subject><subject>Nanoparticles</subject><subject>Peripheral blood</subject><subject>Quantum dots</subject><subject>Resonance</subject><subject>Silica</subject><subject>Substrates</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kc1q3DAURkVpaaZp36AUQTfdeHolW7JmOUmmP5CmMKRro5GvUgVZSiU7MH2HvHNkZpJFF10JLuf7LrqHkPcMlgw4-6xNXuqgvfmNw5IbALYSL8iCCQ6VVIq_JAsAqCveApyQNznfFoQBk6_JSS0a2aqaL8jDFu8xZbfzSLd6dHHAMTlDNx7NmOJc7vw0uIDZYDBIz1zMGHJM9Exn7GkM9OJq_Xc_lDzeTF6PZbjFHIOe8U3AdLOn10mHbDFRW4I_9tHo1Dvt6eC2V2t6gWPZ5mJ4S15Z7TO-O76n5NeXzfX5t-ry59fv5-vLStetHCvTWAM1V42QUrCeScHbHjjnWsKK84apVpmdYGwFSq-M7lsrFCBYC9DYHutT8unQe5finwnz2A2u_M97HTBOueNSCCFBCVXQj_-gt3FK5e4zVY4oOFOyUM2BMinmnNB2d8kNOu07Bt2sqyu6uidd3VFXiX04lk-7Afvn0JOfAsABmOPPi__b-Qj3waVL</recordid><startdate>20220517</startdate><enddate>20220517</enddate><creator>Sun, Yudie</creator><creator>Fang, La</creator><creator>Han, Yunxiang</creator><creator>Feng, Aobo</creator><creator>Liu, Shengjun</creator><creator>Zhang, Kui</creator><creator>Xu, Jing-Juan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1053-7472</orcidid><orcidid>https://orcid.org/0000-0001-9579-9318</orcidid><orcidid>https://orcid.org/0000-0002-5634-9952</orcidid></search><sort><creationdate>20220517</creationdate><title>Reversible Ratiometric Electrochemiluminescence Biosensor Based on DNAzyme Regulated Resonance Energy Transfer for Myocardial miRNA Detection</title><author>Sun, Yudie ; Fang, La ; Han, Yunxiang ; Feng, Aobo ; Liu, Shengjun ; Zhang, Kui ; Xu, Jing-Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-c4fc0328456651d16527d0222a6092241878cb511908a9cad7f580e0ff004fde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biosensors</topic><topic>Cadmium tellurides</topic><topic>Chemistry</topic><topic>DNA probes</topic><topic>Electrochemiluminescence</topic><topic>Emitters</topic><topic>Energy transfer</topic><topic>miRNA</topic><topic>Myocardial infarction</topic><topic>Nanoparticles</topic><topic>Peripheral blood</topic><topic>Quantum dots</topic><topic>Resonance</topic><topic>Silica</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yudie</creatorcontrib><creatorcontrib>Fang, La</creatorcontrib><creatorcontrib>Han, Yunxiang</creatorcontrib><creatorcontrib>Feng, Aobo</creatorcontrib><creatorcontrib>Liu, Shengjun</creatorcontrib><creatorcontrib>Zhang, Kui</creatorcontrib><creatorcontrib>Xu, Jing-Juan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yudie</au><au>Fang, La</au><au>Han, Yunxiang</au><au>Feng, Aobo</au><au>Liu, Shengjun</au><au>Zhang, Kui</au><au>Xu, Jing-Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reversible Ratiometric Electrochemiluminescence Biosensor Based on DNAzyme Regulated Resonance Energy Transfer for Myocardial miRNA Detection</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2022-05-17</date><risdate>2022</risdate><volume>94</volume><issue>19</issue><spage>7035</spage><epage>7040</epage><pages>7035-7040</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Myocardial miRNAs in peripheral blood are closely related to the pathogenic process of myocardial infarction. Rapid identification and accurate quantification of myocardial miRNAs are of great significance to clinical interventions for treating cardiovascular lesions. Therefore, a ratiometric electrochemiluminescence (ECL) biosensor integrating DNAzyme with a resonance energy transfer (RET) system was designed to detect myocardial miRNA. The dual-signal system was composed of rA marked substrate strand functionalized CdTe quantum dots (QDs) as reductive–oxidative (R–O) emitters and Cy5-labeled strand-functionalized Ru­(bpy)3 2+-filled silica nanoparticles (RuSi NPs) as oxidative–reductive (O–R) emitters. In the presence of target miRNA, DNAzyme was activated to cut substrate strands on the CdTe QDs and release triggers for opening hairpin probes. Then, the Cy5 molecule-labeled hairpin DNA on the RuSi NPs was opened to introduce Cy5 molecules and RuSi NPs into the system. The R–O ECL was quenched by ECL-RET between CdTe QDs and Cy5 molecules and the O–R ECL was introduced by the RuSi NPs. In this way, based on the simultaneous changing of the ECL signal, the dual-potential dynamic signal ratiometric ECL sensing platform was developed. By measuring the ratio of O–R ECL signal to R–O ECL signal, the concentration of miRNA-499 was accurately quantified in the range of 10 fM to 10 nM, and the detection limit was as low as 2.44 fM (S/N = 3). This DNAzyme guided dual-potential ratiometric ECL method provides a sensitive and reliable method for myocardial miRNA detection, and it has great potential in clinical diagnosis and treatment.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35467832</pmid><doi>10.1021/acs.analchem.2c00195</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1053-7472</orcidid><orcidid>https://orcid.org/0000-0001-9579-9318</orcidid><orcidid>https://orcid.org/0000-0002-5634-9952</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2022-05, Vol.94 (19), p.7035-7040
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2655560858
source ACS Publications
subjects Biosensors
Cadmium tellurides
Chemistry
DNA probes
Electrochemiluminescence
Emitters
Energy transfer
miRNA
Myocardial infarction
Nanoparticles
Peripheral blood
Quantum dots
Resonance
Silica
Substrates
title Reversible Ratiometric Electrochemiluminescence Biosensor Based on DNAzyme Regulated Resonance Energy Transfer for Myocardial miRNA Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A10%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reversible%20Ratiometric%20Electrochemiluminescence%20Biosensor%20Based%20on%20DNAzyme%20Regulated%20Resonance%20Energy%20Transfer%20for%20Myocardial%20miRNA%20Detection&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Sun,%20Yudie&rft.date=2022-05-17&rft.volume=94&rft.issue=19&rft.spage=7035&rft.epage=7040&rft.pages=7035-7040&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.2c00195&rft_dat=%3Cproquest_cross%3E2655560858%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667852186&rft_id=info:pmid/35467832&rfr_iscdi=true