High‐copy genome integration and stable production of p‐coumaric acid via a POT1‐mediated strategy in Saccharomyces cerevisiae

Aims To overcome the defective unstable production of p‐coumaric acid (p‐CA) using episomal plasmids and simultaneously achieve genetic stability and high‐copy integration in Saccharomyces cerevisiae. Methods and results Two‐micron plasmids were used to obtain high titres of p‐CA, but p‐CA productio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied microbiology 2022-08, Vol.133 (2), p.707-719
Hauptverfasser: Qi, Hang, Li, Yuanzi, Cai, Miao, He, Jiaze, Liu, Jiayu, Song, Xiaofei, Ma, Zhongqiang, Xu, Haijin, Qiao, Mingqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 719
container_issue 2
container_start_page 707
container_title Journal of applied microbiology
container_volume 133
creator Qi, Hang
Li, Yuanzi
Cai, Miao
He, Jiaze
Liu, Jiayu
Song, Xiaofei
Ma, Zhongqiang
Xu, Haijin
Qiao, Mingqiang
description Aims To overcome the defective unstable production of p‐coumaric acid (p‐CA) using episomal plasmids and simultaneously achieve genetic stability and high‐copy integration in Saccharomyces cerevisiae. Methods and results Two‐micron plasmids were used to obtain high titres of p‐CA, but p‐CA production was decreased significantly in a nonselective medium after 72 h. To overcome the defect of unstable p‐CA production during fermentation, delta integration with the triosephosphate isomerase gene from Schizosaccharomyces pombe (POT1) was employed as a selection marker to integrate heterologous p‐CA synthesis cassette, and the high‐level p‐CA‐producing strain QT3‐20 was identified. In shake flask fermentation, the final p‐CA titre of QT3‐20 reached 228.37 mg L−1 at 168 h, 11‐fold higher than integrated strain QU3‐20 using URA3 as the selective marker, and 9‐fold higher than the best‐performing episomal expression strain NKE1. Additionally, the p‐CA titre and gene copy number remained stable after 100 generations of QT3‐20 in a nonselective medium. Conclusion We achieved high‐copy genome integration and stable heterologous production of p‐CA via a POT1‐mediated strategy in S. cerevisiae. Significance and impact of study With superior genetic stability and production stability in a nonselective medium during fermentation, the high‐level p‐CA‐producing strain constructed via POT1‐mediated delta integration could serve as an efficient platform strain, to eliminate the threat of unstable and insufficient supply for future production of p‐CA derivatives, make downstream processing and biosynthesis much simpler.
doi_str_mv 10.1111/jam.15593
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2655102888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2698956068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3883-664f658055358a2e541de1f4fee1611be28b16c1739393d43e32eeaa91518d543</originalsourceid><addsrcrecordid>eNp1kctu1DAUhi0EomVgwQsgS2xgkdbHt0mWVQUUVFQkyjo645xMPUriwU6KsuuiD8Az8iR4ZgoLJOyFLfs7ny8_Yy9BnEBupxvsT8CYSj1ix6CsKaRdysf7uS6MWMoj9iyljRCghLFP2ZEy2kqtl8fs_sKvb37d_XRhO_M1DaEn7oeR1hFHHwaOQ8PTiKuO-DaGZnL71dDy7b5o6jF6x9H5ht965Mi_XF1D3uqp8TjSrjibaD1nK_-Kzt1gDP3sKHFHkW598kjP2ZMWu0QvHsYF-_b-3fX5RXF59eHj-dll4VRZqsJa3VpTCmOUKVGS0dAQtLolAguwIlmuwDpYqir3RitSkgixAgNlY7RasDcHb37K94nSWPc-Oeo6HChMqZbWGBCyzIct2Ot_0E2Y4pBvl6mqrIwVdke9PVAuhpQitfU2-vwlcw2i3kVT52jqfTSZffVgnFb5d_6Sf7LIwOkB-OE7mv9vqj-dfT4ofwM9Zpr0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2698956068</pqid></control><display><type>article</type><title>High‐copy genome integration and stable production of p‐coumaric acid via a POT1‐mediated strategy in Saccharomyces cerevisiae</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Qi, Hang ; Li, Yuanzi ; Cai, Miao ; He, Jiaze ; Liu, Jiayu ; Song, Xiaofei ; Ma, Zhongqiang ; Xu, Haijin ; Qiao, Mingqiang</creator><creatorcontrib>Qi, Hang ; Li, Yuanzi ; Cai, Miao ; He, Jiaze ; Liu, Jiayu ; Song, Xiaofei ; Ma, Zhongqiang ; Xu, Haijin ; Qiao, Mingqiang</creatorcontrib><description>Aims To overcome the defective unstable production of p‐coumaric acid (p‐CA) using episomal plasmids and simultaneously achieve genetic stability and high‐copy integration in Saccharomyces cerevisiae. Methods and results Two‐micron plasmids were used to obtain high titres of p‐CA, but p‐CA production was decreased significantly in a nonselective medium after 72 h. To overcome the defect of unstable p‐CA production during fermentation, delta integration with the triosephosphate isomerase gene from Schizosaccharomyces pombe (POT1) was employed as a selection marker to integrate heterologous p‐CA synthesis cassette, and the high‐level p‐CA‐producing strain QT3‐20 was identified. In shake flask fermentation, the final p‐CA titre of QT3‐20 reached 228.37 mg L−1 at 168 h, 11‐fold higher than integrated strain QU3‐20 using URA3 as the selective marker, and 9‐fold higher than the best‐performing episomal expression strain NKE1. Additionally, the p‐CA titre and gene copy number remained stable after 100 generations of QT3‐20 in a nonselective medium. Conclusion We achieved high‐copy genome integration and stable heterologous production of p‐CA via a POT1‐mediated strategy in S. cerevisiae. Significance and impact of study With superior genetic stability and production stability in a nonselective medium during fermentation, the high‐level p‐CA‐producing strain constructed via POT1‐mediated delta integration could serve as an efficient platform strain, to eliminate the threat of unstable and insufficient supply for future production of p‐CA derivatives, make downstream processing and biosynthesis much simpler.</description><identifier>ISSN: 1364-5072</identifier><identifier>EISSN: 1365-2672</identifier><identifier>DOI: 10.1111/jam.15593</identifier><identifier>PMID: 35462447</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Biosynthesis ; Copy number ; Coumaric acid ; Fermentation ; Fungi ; Genomes ; Integration ; Markers ; metabolic engineering strategy ; Plasmids ; POT1 ; p‐coumaric acid ; Saccharomyces cerevisiae ; Stability ; Triose-phosphate isomerase ; Yeast ; yeast cell factory</subject><ispartof>Journal of applied microbiology, 2022-08, Vol.133 (2), p.707-719</ispartof><rights>2022 Society for Applied Microbiology.</rights><rights>Copyright © 2022 The Society for Applied Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3883-664f658055358a2e541de1f4fee1611be28b16c1739393d43e32eeaa91518d543</citedby><cites>FETCH-LOGICAL-c3883-664f658055358a2e541de1f4fee1611be28b16c1739393d43e32eeaa91518d543</cites><orcidid>0000-0002-5069-9361 ; 0000-0003-2877-3630 ; 0000-0002-5435-1514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjam.15593$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjam.15593$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35462447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qi, Hang</creatorcontrib><creatorcontrib>Li, Yuanzi</creatorcontrib><creatorcontrib>Cai, Miao</creatorcontrib><creatorcontrib>He, Jiaze</creatorcontrib><creatorcontrib>Liu, Jiayu</creatorcontrib><creatorcontrib>Song, Xiaofei</creatorcontrib><creatorcontrib>Ma, Zhongqiang</creatorcontrib><creatorcontrib>Xu, Haijin</creatorcontrib><creatorcontrib>Qiao, Mingqiang</creatorcontrib><title>High‐copy genome integration and stable production of p‐coumaric acid via a POT1‐mediated strategy in Saccharomyces cerevisiae</title><title>Journal of applied microbiology</title><addtitle>J Appl Microbiol</addtitle><description>Aims To overcome the defective unstable production of p‐coumaric acid (p‐CA) using episomal plasmids and simultaneously achieve genetic stability and high‐copy integration in Saccharomyces cerevisiae. Methods and results Two‐micron plasmids were used to obtain high titres of p‐CA, but p‐CA production was decreased significantly in a nonselective medium after 72 h. To overcome the defect of unstable p‐CA production during fermentation, delta integration with the triosephosphate isomerase gene from Schizosaccharomyces pombe (POT1) was employed as a selection marker to integrate heterologous p‐CA synthesis cassette, and the high‐level p‐CA‐producing strain QT3‐20 was identified. In shake flask fermentation, the final p‐CA titre of QT3‐20 reached 228.37 mg L−1 at 168 h, 11‐fold higher than integrated strain QU3‐20 using URA3 as the selective marker, and 9‐fold higher than the best‐performing episomal expression strain NKE1. Additionally, the p‐CA titre and gene copy number remained stable after 100 generations of QT3‐20 in a nonselective medium. Conclusion We achieved high‐copy genome integration and stable heterologous production of p‐CA via a POT1‐mediated strategy in S. cerevisiae. Significance and impact of study With superior genetic stability and production stability in a nonselective medium during fermentation, the high‐level p‐CA‐producing strain constructed via POT1‐mediated delta integration could serve as an efficient platform strain, to eliminate the threat of unstable and insufficient supply for future production of p‐CA derivatives, make downstream processing and biosynthesis much simpler.</description><subject>Biosynthesis</subject><subject>Copy number</subject><subject>Coumaric acid</subject><subject>Fermentation</subject><subject>Fungi</subject><subject>Genomes</subject><subject>Integration</subject><subject>Markers</subject><subject>metabolic engineering strategy</subject><subject>Plasmids</subject><subject>POT1</subject><subject>p‐coumaric acid</subject><subject>Saccharomyces cerevisiae</subject><subject>Stability</subject><subject>Triose-phosphate isomerase</subject><subject>Yeast</subject><subject>yeast cell factory</subject><issn>1364-5072</issn><issn>1365-2672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kctu1DAUhi0EomVgwQsgS2xgkdbHt0mWVQUUVFQkyjo645xMPUriwU6KsuuiD8Az8iR4ZgoLJOyFLfs7ny8_Yy9BnEBupxvsT8CYSj1ix6CsKaRdysf7uS6MWMoj9iyljRCghLFP2ZEy2kqtl8fs_sKvb37d_XRhO_M1DaEn7oeR1hFHHwaOQ8PTiKuO-DaGZnL71dDy7b5o6jF6x9H5ht965Mi_XF1D3uqp8TjSrjibaD1nK_-Kzt1gDP3sKHFHkW598kjP2ZMWu0QvHsYF-_b-3fX5RXF59eHj-dll4VRZqsJa3VpTCmOUKVGS0dAQtLolAguwIlmuwDpYqir3RitSkgixAgNlY7RasDcHb37K94nSWPc-Oeo6HChMqZbWGBCyzIct2Ot_0E2Y4pBvl6mqrIwVdke9PVAuhpQitfU2-vwlcw2i3kVT52jqfTSZffVgnFb5d_6Sf7LIwOkB-OE7mv9vqj-dfT4ofwM9Zpr0</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Qi, Hang</creator><creator>Li, Yuanzi</creator><creator>Cai, Miao</creator><creator>He, Jiaze</creator><creator>Liu, Jiayu</creator><creator>Song, Xiaofei</creator><creator>Ma, Zhongqiang</creator><creator>Xu, Haijin</creator><creator>Qiao, Mingqiang</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5069-9361</orcidid><orcidid>https://orcid.org/0000-0003-2877-3630</orcidid><orcidid>https://orcid.org/0000-0002-5435-1514</orcidid></search><sort><creationdate>202208</creationdate><title>High‐copy genome integration and stable production of p‐coumaric acid via a POT1‐mediated strategy in Saccharomyces cerevisiae</title><author>Qi, Hang ; Li, Yuanzi ; Cai, Miao ; He, Jiaze ; Liu, Jiayu ; Song, Xiaofei ; Ma, Zhongqiang ; Xu, Haijin ; Qiao, Mingqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3883-664f658055358a2e541de1f4fee1611be28b16c1739393d43e32eeaa91518d543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biosynthesis</topic><topic>Copy number</topic><topic>Coumaric acid</topic><topic>Fermentation</topic><topic>Fungi</topic><topic>Genomes</topic><topic>Integration</topic><topic>Markers</topic><topic>metabolic engineering strategy</topic><topic>Plasmids</topic><topic>POT1</topic><topic>p‐coumaric acid</topic><topic>Saccharomyces cerevisiae</topic><topic>Stability</topic><topic>Triose-phosphate isomerase</topic><topic>Yeast</topic><topic>yeast cell factory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Hang</creatorcontrib><creatorcontrib>Li, Yuanzi</creatorcontrib><creatorcontrib>Cai, Miao</creatorcontrib><creatorcontrib>He, Jiaze</creatorcontrib><creatorcontrib>Liu, Jiayu</creatorcontrib><creatorcontrib>Song, Xiaofei</creatorcontrib><creatorcontrib>Ma, Zhongqiang</creatorcontrib><creatorcontrib>Xu, Haijin</creatorcontrib><creatorcontrib>Qiao, Mingqiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of applied microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Hang</au><au>Li, Yuanzi</au><au>Cai, Miao</au><au>He, Jiaze</au><au>Liu, Jiayu</au><au>Song, Xiaofei</au><au>Ma, Zhongqiang</au><au>Xu, Haijin</au><au>Qiao, Mingqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐copy genome integration and stable production of p‐coumaric acid via a POT1‐mediated strategy in Saccharomyces cerevisiae</atitle><jtitle>Journal of applied microbiology</jtitle><addtitle>J Appl Microbiol</addtitle><date>2022-08</date><risdate>2022</risdate><volume>133</volume><issue>2</issue><spage>707</spage><epage>719</epage><pages>707-719</pages><issn>1364-5072</issn><eissn>1365-2672</eissn><abstract>Aims To overcome the defective unstable production of p‐coumaric acid (p‐CA) using episomal plasmids and simultaneously achieve genetic stability and high‐copy integration in Saccharomyces cerevisiae. Methods and results Two‐micron plasmids were used to obtain high titres of p‐CA, but p‐CA production was decreased significantly in a nonselective medium after 72 h. To overcome the defect of unstable p‐CA production during fermentation, delta integration with the triosephosphate isomerase gene from Schizosaccharomyces pombe (POT1) was employed as a selection marker to integrate heterologous p‐CA synthesis cassette, and the high‐level p‐CA‐producing strain QT3‐20 was identified. In shake flask fermentation, the final p‐CA titre of QT3‐20 reached 228.37 mg L−1 at 168 h, 11‐fold higher than integrated strain QU3‐20 using URA3 as the selective marker, and 9‐fold higher than the best‐performing episomal expression strain NKE1. Additionally, the p‐CA titre and gene copy number remained stable after 100 generations of QT3‐20 in a nonselective medium. Conclusion We achieved high‐copy genome integration and stable heterologous production of p‐CA via a POT1‐mediated strategy in S. cerevisiae. Significance and impact of study With superior genetic stability and production stability in a nonselective medium during fermentation, the high‐level p‐CA‐producing strain constructed via POT1‐mediated delta integration could serve as an efficient platform strain, to eliminate the threat of unstable and insufficient supply for future production of p‐CA derivatives, make downstream processing and biosynthesis much simpler.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>35462447</pmid><doi>10.1111/jam.15593</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5069-9361</orcidid><orcidid>https://orcid.org/0000-0003-2877-3630</orcidid><orcidid>https://orcid.org/0000-0002-5435-1514</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-5072
ispartof Journal of applied microbiology, 2022-08, Vol.133 (2), p.707-719
issn 1364-5072
1365-2672
language eng
recordid cdi_proquest_miscellaneous_2655102888
source Wiley Online Library Journals Frontfile Complete; Oxford University Press Journals All Titles (1996-Current)
subjects Biosynthesis
Copy number
Coumaric acid
Fermentation
Fungi
Genomes
Integration
Markers
metabolic engineering strategy
Plasmids
POT1
p‐coumaric acid
Saccharomyces cerevisiae
Stability
Triose-phosphate isomerase
Yeast
yeast cell factory
title High‐copy genome integration and stable production of p‐coumaric acid via a POT1‐mediated strategy in Saccharomyces cerevisiae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A10%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90copy%20genome%20integration%20and%20stable%20production%20of%20p%E2%80%90coumaric%20acid%20via%20a%20POT1%E2%80%90mediated%20strategy%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Journal%20of%20applied%20microbiology&rft.au=Qi,%20Hang&rft.date=2022-08&rft.volume=133&rft.issue=2&rft.spage=707&rft.epage=719&rft.pages=707-719&rft.issn=1364-5072&rft.eissn=1365-2672&rft_id=info:doi/10.1111/jam.15593&rft_dat=%3Cproquest_cross%3E2698956068%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2698956068&rft_id=info:pmid/35462447&rfr_iscdi=true