Heuristic Linking Models in Multiscale Image Segmentation
This paper presents a novel approach to multiscale image segmentation. It addresses the linking of pixels at adjacent levels in scale-space and the labeling of roots representing segments in the original image. In previous multiscale segmentation approaches, linking and root labeling were based on i...
Gespeichert in:
Veröffentlicht in: | Computer vision and image understanding 1997, Vol.65 (3), p.382-402 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 402 |
---|---|
container_issue | 3 |
container_start_page | 382 |
container_title | Computer vision and image understanding |
container_volume | 65 |
creator | Koster, André S.E. Vincken, Koen L. de Graaf, Cornelis N. Zander, Olaf C. Viergever, Max A. |
description | This paper presents a novel approach to multiscale image segmentation. It addresses the linking of pixels at adjacent levels in scale-space and the labeling of roots representing segments in the original image. In previous multiscale segmentation approaches, linking and root labeling were based on intensity proximity only. The approach proposed here contains multiple heuristic mechanisms that result in a single criterion for linking (
affection) and root labeling (
adultness). The segmentations are validated by measuring the amount of postprocessing that is needed to reach an objectively defined accuracy of segmentation. The evaluation is performed using three artificial 2D images with different characteristics, and two 2D magnetic resonance brain images. A comparison is made with a pyramid segmentation method. It is found that several of the proposed heuristic link and root mechanisms improve the performance of multiscale segmentation. A very satisfactory segmentation of all images could be obtained by using a fixed set of compromised weight settings of the most effective mechanisms. |
doi_str_mv | 10.1006/cviu.1996.0490 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26546067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1077314296904907</els_id><sourcerecordid>16011818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-1503b564a4a5ac9d8efb175f89bd1b4cdf02d5308966c6008d224e6f1cc125763</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EEqWwMmdAbAnnxHbiEVVAK7ViACQ2y7EvlSEfxU4q8d-TqBUbYrob3nv37kfINYWEAog7s3dDQqUUCTAJJ2RGQUKcZvz9dNrzPM4oS8_JRQgfAJQySWdELnHwLvTORGvXfrp2G206i3WIXBtthrp3wegao1Wjtxi94LbBtte969pLclbpOuDVcc7J2-PD62IZr5-fVov7dWyyPO9jyiEruWCaaa6NtAVWJc15VcjS0pIZW0FqeQaFFMIIgMKmKUNRUWNoynORzcntIXfnu68BQ6-asRPWtW6xG4JKBWcCRP6vkIrx6YIWozA5CI3vQvBYqZ13jfbfioKaUKoJpZpQqgnlaLg5JuuJRuV1a1z4daUiYwVMBYqDbMSHe4deBeOwNWidR9Mr27m_LvwAe9KGYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16011818</pqid></control><display><type>article</type><title>Heuristic Linking Models in Multiscale Image Segmentation</title><source>Elsevier ScienceDirect Journals</source><creator>Koster, André S.E. ; Vincken, Koen L. ; de Graaf, Cornelis N. ; Zander, Olaf C. ; Viergever, Max A.</creator><creatorcontrib>Koster, André S.E. ; Vincken, Koen L. ; de Graaf, Cornelis N. ; Zander, Olaf C. ; Viergever, Max A.</creatorcontrib><description>This paper presents a novel approach to multiscale image segmentation. It addresses the linking of pixels at adjacent levels in scale-space and the labeling of roots representing segments in the original image. In previous multiscale segmentation approaches, linking and root labeling were based on intensity proximity only. The approach proposed here contains multiple heuristic mechanisms that result in a single criterion for linking (
affection) and root labeling (
adultness). The segmentations are validated by measuring the amount of postprocessing that is needed to reach an objectively defined accuracy of segmentation. The evaluation is performed using three artificial 2D images with different characteristics, and two 2D magnetic resonance brain images. A comparison is made with a pyramid segmentation method. It is found that several of the proposed heuristic link and root mechanisms improve the performance of multiscale segmentation. A very satisfactory segmentation of all images could be obtained by using a fixed set of compromised weight settings of the most effective mechanisms.</description><identifier>ISSN: 1077-3142</identifier><identifier>EISSN: 1090-235X</identifier><identifier>DOI: 10.1006/cviu.1996.0490</identifier><identifier>CODEN: CVIUF4</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Pattern recognition. Digital image processing. Computational geometry</subject><ispartof>Computer vision and image understanding, 1997, Vol.65 (3), p.382-402</ispartof><rights>1997 Academic Press</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-1503b564a4a5ac9d8efb175f89bd1b4cdf02d5308966c6008d224e6f1cc125763</citedby><cites>FETCH-LOGICAL-c377t-1503b564a4a5ac9d8efb175f89bd1b4cdf02d5308966c6008d224e6f1cc125763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/cviu.1996.0490$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,4009,27902,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2634807$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Koster, André S.E.</creatorcontrib><creatorcontrib>Vincken, Koen L.</creatorcontrib><creatorcontrib>de Graaf, Cornelis N.</creatorcontrib><creatorcontrib>Zander, Olaf C.</creatorcontrib><creatorcontrib>Viergever, Max A.</creatorcontrib><title>Heuristic Linking Models in Multiscale Image Segmentation</title><title>Computer vision and image understanding</title><description>This paper presents a novel approach to multiscale image segmentation. It addresses the linking of pixels at adjacent levels in scale-space and the labeling of roots representing segments in the original image. In previous multiscale segmentation approaches, linking and root labeling were based on intensity proximity only. The approach proposed here contains multiple heuristic mechanisms that result in a single criterion for linking (
affection) and root labeling (
adultness). The segmentations are validated by measuring the amount of postprocessing that is needed to reach an objectively defined accuracy of segmentation. The evaluation is performed using three artificial 2D images with different characteristics, and two 2D magnetic resonance brain images. A comparison is made with a pyramid segmentation method. It is found that several of the proposed heuristic link and root mechanisms improve the performance of multiscale segmentation. A very satisfactory segmentation of all images could be obtained by using a fixed set of compromised weight settings of the most effective mechanisms.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><issn>1077-3142</issn><issn>1090-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAQxS0EEqWwMmdAbAnnxHbiEVVAK7ViACQ2y7EvlSEfxU4q8d-TqBUbYrob3nv37kfINYWEAog7s3dDQqUUCTAJJ2RGQUKcZvz9dNrzPM4oS8_JRQgfAJQySWdELnHwLvTORGvXfrp2G206i3WIXBtthrp3wegao1Wjtxi94LbBtte969pLclbpOuDVcc7J2-PD62IZr5-fVov7dWyyPO9jyiEruWCaaa6NtAVWJc15VcjS0pIZW0FqeQaFFMIIgMKmKUNRUWNoynORzcntIXfnu68BQ6-asRPWtW6xG4JKBWcCRP6vkIrx6YIWozA5CI3vQvBYqZ13jfbfioKaUKoJpZpQqgnlaLg5JuuJRuV1a1z4daUiYwVMBYqDbMSHe4deBeOwNWidR9Mr27m_LvwAe9KGYg</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Koster, André S.E.</creator><creator>Vincken, Koen L.</creator><creator>de Graaf, Cornelis N.</creator><creator>Zander, Olaf C.</creator><creator>Viergever, Max A.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1997</creationdate><title>Heuristic Linking Models in Multiscale Image Segmentation</title><author>Koster, André S.E. ; Vincken, Koen L. ; de Graaf, Cornelis N. ; Zander, Olaf C. ; Viergever, Max A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-1503b564a4a5ac9d8efb175f89bd1b4cdf02d5308966c6008d224e6f1cc125763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koster, André S.E.</creatorcontrib><creatorcontrib>Vincken, Koen L.</creatorcontrib><creatorcontrib>de Graaf, Cornelis N.</creatorcontrib><creatorcontrib>Zander, Olaf C.</creatorcontrib><creatorcontrib>Viergever, Max A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer vision and image understanding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koster, André S.E.</au><au>Vincken, Koen L.</au><au>de Graaf, Cornelis N.</au><au>Zander, Olaf C.</au><au>Viergever, Max A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heuristic Linking Models in Multiscale Image Segmentation</atitle><jtitle>Computer vision and image understanding</jtitle><date>1997</date><risdate>1997</risdate><volume>65</volume><issue>3</issue><spage>382</spage><epage>402</epage><pages>382-402</pages><issn>1077-3142</issn><eissn>1090-235X</eissn><coden>CVIUF4</coden><abstract>This paper presents a novel approach to multiscale image segmentation. It addresses the linking of pixels at adjacent levels in scale-space and the labeling of roots representing segments in the original image. In previous multiscale segmentation approaches, linking and root labeling were based on intensity proximity only. The approach proposed here contains multiple heuristic mechanisms that result in a single criterion for linking (
affection) and root labeling (
adultness). The segmentations are validated by measuring the amount of postprocessing that is needed to reach an objectively defined accuracy of segmentation. The evaluation is performed using three artificial 2D images with different characteristics, and two 2D magnetic resonance brain images. A comparison is made with a pyramid segmentation method. It is found that several of the proposed heuristic link and root mechanisms improve the performance of multiscale segmentation. A very satisfactory segmentation of all images could be obtained by using a fixed set of compromised weight settings of the most effective mechanisms.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/cviu.1996.0490</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-3142 |
ispartof | Computer vision and image understanding, 1997, Vol.65 (3), p.382-402 |
issn | 1077-3142 1090-235X |
language | eng |
recordid | cdi_proquest_miscellaneous_26546067 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Pattern recognition. Digital image processing. Computational geometry |
title | Heuristic Linking Models in Multiscale Image Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A06%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heuristic%20Linking%20Models%20in%20Multiscale%20Image%20Segmentation&rft.jtitle=Computer%20vision%20and%20image%20understanding&rft.au=Koster,%20Andr%C3%A9%20S.E.&rft.date=1997&rft.volume=65&rft.issue=3&rft.spage=382&rft.epage=402&rft.pages=382-402&rft.issn=1077-3142&rft.eissn=1090-235X&rft.coden=CVIUF4&rft_id=info:doi/10.1006/cviu.1996.0490&rft_dat=%3Cproquest_cross%3E16011818%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16011818&rft_id=info:pmid/&rft_els_id=S1077314296904907&rfr_iscdi=true |