Heuristic Linking Models in Multiscale Image Segmentation

This paper presents a novel approach to multiscale image segmentation. It addresses the linking of pixels at adjacent levels in scale-space and the labeling of roots representing segments in the original image. In previous multiscale segmentation approaches, linking and root labeling were based on i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer vision and image understanding 1997, Vol.65 (3), p.382-402
Hauptverfasser: Koster, André S.E., Vincken, Koen L., de Graaf, Cornelis N., Zander, Olaf C., Viergever, Max A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 402
container_issue 3
container_start_page 382
container_title Computer vision and image understanding
container_volume 65
creator Koster, André S.E.
Vincken, Koen L.
de Graaf, Cornelis N.
Zander, Olaf C.
Viergever, Max A.
description This paper presents a novel approach to multiscale image segmentation. It addresses the linking of pixels at adjacent levels in scale-space and the labeling of roots representing segments in the original image. In previous multiscale segmentation approaches, linking and root labeling were based on intensity proximity only. The approach proposed here contains multiple heuristic mechanisms that result in a single criterion for linking ( affection) and root labeling ( adultness). The segmentations are validated by measuring the amount of postprocessing that is needed to reach an objectively defined accuracy of segmentation. The evaluation is performed using three artificial 2D images with different characteristics, and two 2D magnetic resonance brain images. A comparison is made with a pyramid segmentation method. It is found that several of the proposed heuristic link and root mechanisms improve the performance of multiscale segmentation. A very satisfactory segmentation of all images could be obtained by using a fixed set of compromised weight settings of the most effective mechanisms.
doi_str_mv 10.1006/cviu.1996.0490
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26546067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1077314296904907</els_id><sourcerecordid>16011818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-1503b564a4a5ac9d8efb175f89bd1b4cdf02d5308966c6008d224e6f1cc125763</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EEqWwMmdAbAnnxHbiEVVAK7ViACQ2y7EvlSEfxU4q8d-TqBUbYrob3nv37kfINYWEAog7s3dDQqUUCTAJJ2RGQUKcZvz9dNrzPM4oS8_JRQgfAJQySWdELnHwLvTORGvXfrp2G206i3WIXBtthrp3wegao1Wjtxi94LbBtte969pLclbpOuDVcc7J2-PD62IZr5-fVov7dWyyPO9jyiEruWCaaa6NtAVWJc15VcjS0pIZW0FqeQaFFMIIgMKmKUNRUWNoynORzcntIXfnu68BQ6-asRPWtW6xG4JKBWcCRP6vkIrx6YIWozA5CI3vQvBYqZ13jfbfioKaUKoJpZpQqgnlaLg5JuuJRuV1a1z4daUiYwVMBYqDbMSHe4deBeOwNWidR9Mr27m_LvwAe9KGYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16011818</pqid></control><display><type>article</type><title>Heuristic Linking Models in Multiscale Image Segmentation</title><source>Elsevier ScienceDirect Journals</source><creator>Koster, André S.E. ; Vincken, Koen L. ; de Graaf, Cornelis N. ; Zander, Olaf C. ; Viergever, Max A.</creator><creatorcontrib>Koster, André S.E. ; Vincken, Koen L. ; de Graaf, Cornelis N. ; Zander, Olaf C. ; Viergever, Max A.</creatorcontrib><description>This paper presents a novel approach to multiscale image segmentation. It addresses the linking of pixels at adjacent levels in scale-space and the labeling of roots representing segments in the original image. In previous multiscale segmentation approaches, linking and root labeling were based on intensity proximity only. The approach proposed here contains multiple heuristic mechanisms that result in a single criterion for linking ( affection) and root labeling ( adultness). The segmentations are validated by measuring the amount of postprocessing that is needed to reach an objectively defined accuracy of segmentation. The evaluation is performed using three artificial 2D images with different characteristics, and two 2D magnetic resonance brain images. A comparison is made with a pyramid segmentation method. It is found that several of the proposed heuristic link and root mechanisms improve the performance of multiscale segmentation. A very satisfactory segmentation of all images could be obtained by using a fixed set of compromised weight settings of the most effective mechanisms.</description><identifier>ISSN: 1077-3142</identifier><identifier>EISSN: 1090-235X</identifier><identifier>DOI: 10.1006/cviu.1996.0490</identifier><identifier>CODEN: CVIUF4</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Pattern recognition. Digital image processing. Computational geometry</subject><ispartof>Computer vision and image understanding, 1997, Vol.65 (3), p.382-402</ispartof><rights>1997 Academic Press</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-1503b564a4a5ac9d8efb175f89bd1b4cdf02d5308966c6008d224e6f1cc125763</citedby><cites>FETCH-LOGICAL-c377t-1503b564a4a5ac9d8efb175f89bd1b4cdf02d5308966c6008d224e6f1cc125763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/cviu.1996.0490$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,4009,27902,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2634807$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Koster, André S.E.</creatorcontrib><creatorcontrib>Vincken, Koen L.</creatorcontrib><creatorcontrib>de Graaf, Cornelis N.</creatorcontrib><creatorcontrib>Zander, Olaf C.</creatorcontrib><creatorcontrib>Viergever, Max A.</creatorcontrib><title>Heuristic Linking Models in Multiscale Image Segmentation</title><title>Computer vision and image understanding</title><description>This paper presents a novel approach to multiscale image segmentation. It addresses the linking of pixels at adjacent levels in scale-space and the labeling of roots representing segments in the original image. In previous multiscale segmentation approaches, linking and root labeling were based on intensity proximity only. The approach proposed here contains multiple heuristic mechanisms that result in a single criterion for linking ( affection) and root labeling ( adultness). The segmentations are validated by measuring the amount of postprocessing that is needed to reach an objectively defined accuracy of segmentation. The evaluation is performed using three artificial 2D images with different characteristics, and two 2D magnetic resonance brain images. A comparison is made with a pyramid segmentation method. It is found that several of the proposed heuristic link and root mechanisms improve the performance of multiscale segmentation. A very satisfactory segmentation of all images could be obtained by using a fixed set of compromised weight settings of the most effective mechanisms.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><issn>1077-3142</issn><issn>1090-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAQxS0EEqWwMmdAbAnnxHbiEVVAK7ViACQ2y7EvlSEfxU4q8d-TqBUbYrob3nv37kfINYWEAog7s3dDQqUUCTAJJ2RGQUKcZvz9dNrzPM4oS8_JRQgfAJQySWdELnHwLvTORGvXfrp2G206i3WIXBtthrp3wegao1Wjtxi94LbBtte969pLclbpOuDVcc7J2-PD62IZr5-fVov7dWyyPO9jyiEruWCaaa6NtAVWJc15VcjS0pIZW0FqeQaFFMIIgMKmKUNRUWNoynORzcntIXfnu68BQ6-asRPWtW6xG4JKBWcCRP6vkIrx6YIWozA5CI3vQvBYqZ13jfbfioKaUKoJpZpQqgnlaLg5JuuJRuV1a1z4daUiYwVMBYqDbMSHe4deBeOwNWidR9Mr27m_LvwAe9KGYg</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Koster, André S.E.</creator><creator>Vincken, Koen L.</creator><creator>de Graaf, Cornelis N.</creator><creator>Zander, Olaf C.</creator><creator>Viergever, Max A.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1997</creationdate><title>Heuristic Linking Models in Multiscale Image Segmentation</title><author>Koster, André S.E. ; Vincken, Koen L. ; de Graaf, Cornelis N. ; Zander, Olaf C. ; Viergever, Max A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-1503b564a4a5ac9d8efb175f89bd1b4cdf02d5308966c6008d224e6f1cc125763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koster, André S.E.</creatorcontrib><creatorcontrib>Vincken, Koen L.</creatorcontrib><creatorcontrib>de Graaf, Cornelis N.</creatorcontrib><creatorcontrib>Zander, Olaf C.</creatorcontrib><creatorcontrib>Viergever, Max A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer vision and image understanding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koster, André S.E.</au><au>Vincken, Koen L.</au><au>de Graaf, Cornelis N.</au><au>Zander, Olaf C.</au><au>Viergever, Max A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heuristic Linking Models in Multiscale Image Segmentation</atitle><jtitle>Computer vision and image understanding</jtitle><date>1997</date><risdate>1997</risdate><volume>65</volume><issue>3</issue><spage>382</spage><epage>402</epage><pages>382-402</pages><issn>1077-3142</issn><eissn>1090-235X</eissn><coden>CVIUF4</coden><abstract>This paper presents a novel approach to multiscale image segmentation. It addresses the linking of pixels at adjacent levels in scale-space and the labeling of roots representing segments in the original image. In previous multiscale segmentation approaches, linking and root labeling were based on intensity proximity only. The approach proposed here contains multiple heuristic mechanisms that result in a single criterion for linking ( affection) and root labeling ( adultness). The segmentations are validated by measuring the amount of postprocessing that is needed to reach an objectively defined accuracy of segmentation. The evaluation is performed using three artificial 2D images with different characteristics, and two 2D magnetic resonance brain images. A comparison is made with a pyramid segmentation method. It is found that several of the proposed heuristic link and root mechanisms improve the performance of multiscale segmentation. A very satisfactory segmentation of all images could be obtained by using a fixed set of compromised weight settings of the most effective mechanisms.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/cviu.1996.0490</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1077-3142
ispartof Computer vision and image understanding, 1997, Vol.65 (3), p.382-402
issn 1077-3142
1090-235X
language eng
recordid cdi_proquest_miscellaneous_26546067
source Elsevier ScienceDirect Journals
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Pattern recognition. Digital image processing. Computational geometry
title Heuristic Linking Models in Multiscale Image Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A06%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heuristic%20Linking%20Models%20in%20Multiscale%20Image%20Segmentation&rft.jtitle=Computer%20vision%20and%20image%20understanding&rft.au=Koster,%20Andr%C3%A9%20S.E.&rft.date=1997&rft.volume=65&rft.issue=3&rft.spage=382&rft.epage=402&rft.pages=382-402&rft.issn=1077-3142&rft.eissn=1090-235X&rft.coden=CVIUF4&rft_id=info:doi/10.1006/cviu.1996.0490&rft_dat=%3Cproquest_cross%3E16011818%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16011818&rft_id=info:pmid/&rft_els_id=S1077314296904907&rfr_iscdi=true