A regression framework for a probabilistic measure of cost‐effectiveness

To make informed health policy decisions regarding a treatment, we must consider both its cost and its clinical effectiveness. In past work, we introduced the net benefit separation (NBS) as a novel measure of cost‐effectiveness. The NBS is a probabilistic measure that characterizes the extent to wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Health economics 2022-07, Vol.31 (7), p.1438-1451
Hauptverfasser: Illenberger, Nicholas, Mitra, Nandita, Spieker, Andrew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1451
container_issue 7
container_start_page 1438
container_title Health economics
container_volume 31
creator Illenberger, Nicholas
Mitra, Nandita
Spieker, Andrew J.
description To make informed health policy decisions regarding a treatment, we must consider both its cost and its clinical effectiveness. In past work, we introduced the net benefit separation (NBS) as a novel measure of cost‐effectiveness. The NBS is a probabilistic measure that characterizes the extent to which a treated patient will be more likely to experience benefit as compared to an untreated patient. Due to variation in treatment response across patients, uncovering factors that influence cost‐effectiveness can assist policy makers in population‐level decisions regarding resource allocation. In this paper, we introduce a regression framework for NBS in order to estimate covariate‐specific NBS and find determinants of variation in NBS. Our approach is able to accommodate informative cost censoring through inverse probability weighting techniques, and addresses confounding through a semiparametric standardization procedure. Through simulations, we show that NBS regression performs well in a variety of common scenarios. We apply our proposed regression procedure to a realistic simulated data set as an illustration of how our approach could be used to investigate the association between cancer stage, comorbidities and cost‐effectiveness when comparing adjuvant radiation therapy and chemotherapy in post‐hysterectomy endometrial cancer patients.
doi_str_mv 10.1002/hec.4517
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2654297863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2654297863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3227-cb1ad16894b00e822257d16b3a700bfd995f74f46c124b56f8a8d8c6b0afeddb3</originalsourceid><addsrcrecordid>eNp1kMFO3DAQhq2qqAvbSn0CZKkXLoGx4zjxEa2gC0LiAufIdsatIYmpvQHtjUfgGfskeFkKElJP45E_ff_oJ-Q7g0MGwI9-oz0UFas_kV0GShUMKvi8eVd1oXgJM7KX0g1A_gP5hczKSkhgQu2S82Ma8VfElHwYqYt6wIcQb6kLkWp6F4PRxvc-rbylA-o0RaTBURvS6u_jEzqHduXvccyCr2TH6T7ht9c5J9enJ1eLZXFx-fNscXxR2JLzurCG6Y7JRgkDgA3nvKrzbkpdAxjXKVW5WjghLePCVNI1uukaKw1oh11nyjk52HrzdX8mTKt28Mli3-sRw5RaLivBVd3IMqM_PqA3YYpjvi5TdakaKJV8F9oYUoro2rvoBx3XLYN202-b-203_WZ0_1U4mQG7N_BfoRmgWwBtGH16NzUMcqAUkJFiizz4Htf_zWqXJ4uXzGfUUY6R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673980396</pqid></control><display><type>article</type><title>A regression framework for a probabilistic measure of cost‐effectiveness</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>PAIS Index</source><creator>Illenberger, Nicholas ; Mitra, Nandita ; Spieker, Andrew J.</creator><creatorcontrib>Illenberger, Nicholas ; Mitra, Nandita ; Spieker, Andrew J.</creatorcontrib><description>To make informed health policy decisions regarding a treatment, we must consider both its cost and its clinical effectiveness. In past work, we introduced the net benefit separation (NBS) as a novel measure of cost‐effectiveness. The NBS is a probabilistic measure that characterizes the extent to which a treated patient will be more likely to experience benefit as compared to an untreated patient. Due to variation in treatment response across patients, uncovering factors that influence cost‐effectiveness can assist policy makers in population‐level decisions regarding resource allocation. In this paper, we introduce a regression framework for NBS in order to estimate covariate‐specific NBS and find determinants of variation in NBS. Our approach is able to accommodate informative cost censoring through inverse probability weighting techniques, and addresses confounding through a semiparametric standardization procedure. Through simulations, we show that NBS regression performs well in a variety of common scenarios. We apply our proposed regression procedure to a realistic simulated data set as an illustration of how our approach could be used to investigate the association between cancer stage, comorbidities and cost‐effectiveness when comparing adjuvant radiation therapy and chemotherapy in post‐hysterectomy endometrial cancer patients.</description><identifier>ISSN: 1057-9230</identifier><identifier>EISSN: 1099-1050</identifier><identifier>DOI: 10.1002/hec.4517</identifier><identifier>PMID: 35460149</identifier><language>eng</language><publisher>England: Wiley Periodicals Inc</publisher><subject>Cancer ; censoring ; Chemotherapy ; Clinical effectiveness ; Cost analysis ; Cost-Benefit Analysis ; cost‐effecitveness ; Effectiveness ; Endometrial cancer ; Female ; Health care expenditures ; Health care policy ; Health economics ; Humans ; Hysterectomy ; Medical treatment ; observational ; Patients ; Policy making ; Population policy ; Radiation ; Resource allocation ; Standardization ; stochastic ordering ; Treatment Outcome ; Weighting</subject><ispartof>Health economics, 2022-07, Vol.31 (7), p.1438-1451</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3227-cb1ad16894b00e822257d16b3a700bfd995f74f46c124b56f8a8d8c6b0afeddb3</citedby><cites>FETCH-LOGICAL-c3227-cb1ad16894b00e822257d16b3a700bfd995f74f46c124b56f8a8d8c6b0afeddb3</cites><orcidid>0000-0003-4967-0390 ; 0000-0002-0548-8311</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhec.4517$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhec.4517$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27843,27901,27902,30976,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35460149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Illenberger, Nicholas</creatorcontrib><creatorcontrib>Mitra, Nandita</creatorcontrib><creatorcontrib>Spieker, Andrew J.</creatorcontrib><title>A regression framework for a probabilistic measure of cost‐effectiveness</title><title>Health economics</title><addtitle>Health Econ</addtitle><description>To make informed health policy decisions regarding a treatment, we must consider both its cost and its clinical effectiveness. In past work, we introduced the net benefit separation (NBS) as a novel measure of cost‐effectiveness. The NBS is a probabilistic measure that characterizes the extent to which a treated patient will be more likely to experience benefit as compared to an untreated patient. Due to variation in treatment response across patients, uncovering factors that influence cost‐effectiveness can assist policy makers in population‐level decisions regarding resource allocation. In this paper, we introduce a regression framework for NBS in order to estimate covariate‐specific NBS and find determinants of variation in NBS. Our approach is able to accommodate informative cost censoring through inverse probability weighting techniques, and addresses confounding through a semiparametric standardization procedure. Through simulations, we show that NBS regression performs well in a variety of common scenarios. We apply our proposed regression procedure to a realistic simulated data set as an illustration of how our approach could be used to investigate the association between cancer stage, comorbidities and cost‐effectiveness when comparing adjuvant radiation therapy and chemotherapy in post‐hysterectomy endometrial cancer patients.</description><subject>Cancer</subject><subject>censoring</subject><subject>Chemotherapy</subject><subject>Clinical effectiveness</subject><subject>Cost analysis</subject><subject>Cost-Benefit Analysis</subject><subject>cost‐effecitveness</subject><subject>Effectiveness</subject><subject>Endometrial cancer</subject><subject>Female</subject><subject>Health care expenditures</subject><subject>Health care policy</subject><subject>Health economics</subject><subject>Humans</subject><subject>Hysterectomy</subject><subject>Medical treatment</subject><subject>observational</subject><subject>Patients</subject><subject>Policy making</subject><subject>Population policy</subject><subject>Radiation</subject><subject>Resource allocation</subject><subject>Standardization</subject><subject>stochastic ordering</subject><subject>Treatment Outcome</subject><subject>Weighting</subject><issn>1057-9230</issn><issn>1099-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><sourceid>7TQ</sourceid><recordid>eNp1kMFO3DAQhq2qqAvbSn0CZKkXLoGx4zjxEa2gC0LiAufIdsatIYmpvQHtjUfgGfskeFkKElJP45E_ff_oJ-Q7g0MGwI9-oz0UFas_kV0GShUMKvi8eVd1oXgJM7KX0g1A_gP5hczKSkhgQu2S82Ma8VfElHwYqYt6wIcQb6kLkWp6F4PRxvc-rbylA-o0RaTBURvS6u_jEzqHduXvccyCr2TH6T7ht9c5J9enJ1eLZXFx-fNscXxR2JLzurCG6Y7JRgkDgA3nvKrzbkpdAxjXKVW5WjghLePCVNI1uukaKw1oh11nyjk52HrzdX8mTKt28Mli3-sRw5RaLivBVd3IMqM_PqA3YYpjvi5TdakaKJV8F9oYUoro2rvoBx3XLYN202-b-203_WZ0_1U4mQG7N_BfoRmgWwBtGH16NzUMcqAUkJFiizz4Htf_zWqXJ4uXzGfUUY6R</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Illenberger, Nicholas</creator><creator>Mitra, Nandita</creator><creator>Spieker, Andrew J.</creator><general>Wiley Periodicals Inc</general><scope>OQ6</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7TQ</scope><scope>DHY</scope><scope>DON</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4967-0390</orcidid><orcidid>https://orcid.org/0000-0002-0548-8311</orcidid></search><sort><creationdate>202207</creationdate><title>A regression framework for a probabilistic measure of cost‐effectiveness</title><author>Illenberger, Nicholas ; Mitra, Nandita ; Spieker, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3227-cb1ad16894b00e822257d16b3a700bfd995f74f46c124b56f8a8d8c6b0afeddb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cancer</topic><topic>censoring</topic><topic>Chemotherapy</topic><topic>Clinical effectiveness</topic><topic>Cost analysis</topic><topic>Cost-Benefit Analysis</topic><topic>cost‐effecitveness</topic><topic>Effectiveness</topic><topic>Endometrial cancer</topic><topic>Female</topic><topic>Health care expenditures</topic><topic>Health care policy</topic><topic>Health economics</topic><topic>Humans</topic><topic>Hysterectomy</topic><topic>Medical treatment</topic><topic>observational</topic><topic>Patients</topic><topic>Policy making</topic><topic>Population policy</topic><topic>Radiation</topic><topic>Resource allocation</topic><topic>Standardization</topic><topic>stochastic ordering</topic><topic>Treatment Outcome</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Illenberger, Nicholas</creatorcontrib><creatorcontrib>Mitra, Nandita</creatorcontrib><creatorcontrib>Spieker, Andrew J.</creatorcontrib><collection>ECONIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>PAIS Index</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>MEDLINE - Academic</collection><jtitle>Health economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Illenberger, Nicholas</au><au>Mitra, Nandita</au><au>Spieker, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A regression framework for a probabilistic measure of cost‐effectiveness</atitle><jtitle>Health economics</jtitle><addtitle>Health Econ</addtitle><date>2022-07</date><risdate>2022</risdate><volume>31</volume><issue>7</issue><spage>1438</spage><epage>1451</epage><pages>1438-1451</pages><issn>1057-9230</issn><eissn>1099-1050</eissn><abstract>To make informed health policy decisions regarding a treatment, we must consider both its cost and its clinical effectiveness. In past work, we introduced the net benefit separation (NBS) as a novel measure of cost‐effectiveness. The NBS is a probabilistic measure that characterizes the extent to which a treated patient will be more likely to experience benefit as compared to an untreated patient. Due to variation in treatment response across patients, uncovering factors that influence cost‐effectiveness can assist policy makers in population‐level decisions regarding resource allocation. In this paper, we introduce a regression framework for NBS in order to estimate covariate‐specific NBS and find determinants of variation in NBS. Our approach is able to accommodate informative cost censoring through inverse probability weighting techniques, and addresses confounding through a semiparametric standardization procedure. Through simulations, we show that NBS regression performs well in a variety of common scenarios. We apply our proposed regression procedure to a realistic simulated data set as an illustration of how our approach could be used to investigate the association between cancer stage, comorbidities and cost‐effectiveness when comparing adjuvant radiation therapy and chemotherapy in post‐hysterectomy endometrial cancer patients.</abstract><cop>England</cop><pub>Wiley Periodicals Inc</pub><pmid>35460149</pmid><doi>10.1002/hec.4517</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4967-0390</orcidid><orcidid>https://orcid.org/0000-0002-0548-8311</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1057-9230
ispartof Health economics, 2022-07, Vol.31 (7), p.1438-1451
issn 1057-9230
1099-1050
language eng
recordid cdi_proquest_miscellaneous_2654297863
source Applied Social Sciences Index & Abstracts (ASSIA); MEDLINE; Wiley Online Library Journals Frontfile Complete; PAIS Index
subjects Cancer
censoring
Chemotherapy
Clinical effectiveness
Cost analysis
Cost-Benefit Analysis
cost‐effecitveness
Effectiveness
Endometrial cancer
Female
Health care expenditures
Health care policy
Health economics
Humans
Hysterectomy
Medical treatment
observational
Patients
Policy making
Population policy
Radiation
Resource allocation
Standardization
stochastic ordering
Treatment Outcome
Weighting
title A regression framework for a probabilistic measure of cost‐effectiveness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A34%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20regression%20framework%20for%20a%20probabilistic%20measure%20of%20cost%E2%80%90effectiveness&rft.jtitle=Health%20economics&rft.au=Illenberger,%20Nicholas&rft.date=2022-07&rft.volume=31&rft.issue=7&rft.spage=1438&rft.epage=1451&rft.pages=1438-1451&rft.issn=1057-9230&rft.eissn=1099-1050&rft_id=info:doi/10.1002/hec.4517&rft_dat=%3Cproquest_cross%3E2654297863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673980396&rft_id=info:pmid/35460149&rfr_iscdi=true