A regression framework for a probabilistic measure of cost‐effectiveness
To make informed health policy decisions regarding a treatment, we must consider both its cost and its clinical effectiveness. In past work, we introduced the net benefit separation (NBS) as a novel measure of cost‐effectiveness. The NBS is a probabilistic measure that characterizes the extent to wh...
Gespeichert in:
Veröffentlicht in: | Health economics 2022-07, Vol.31 (7), p.1438-1451 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1451 |
---|---|
container_issue | 7 |
container_start_page | 1438 |
container_title | Health economics |
container_volume | 31 |
creator | Illenberger, Nicholas Mitra, Nandita Spieker, Andrew J. |
description | To make informed health policy decisions regarding a treatment, we must consider both its cost and its clinical effectiveness. In past work, we introduced the net benefit separation (NBS) as a novel measure of cost‐effectiveness. The NBS is a probabilistic measure that characterizes the extent to which a treated patient will be more likely to experience benefit as compared to an untreated patient. Due to variation in treatment response across patients, uncovering factors that influence cost‐effectiveness can assist policy makers in population‐level decisions regarding resource allocation. In this paper, we introduce a regression framework for NBS in order to estimate covariate‐specific NBS and find determinants of variation in NBS. Our approach is able to accommodate informative cost censoring through inverse probability weighting techniques, and addresses confounding through a semiparametric standardization procedure. Through simulations, we show that NBS regression performs well in a variety of common scenarios. We apply our proposed regression procedure to a realistic simulated data set as an illustration of how our approach could be used to investigate the association between cancer stage, comorbidities and cost‐effectiveness when comparing adjuvant radiation therapy and chemotherapy in post‐hysterectomy endometrial cancer patients. |
doi_str_mv | 10.1002/hec.4517 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2654297863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2654297863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3227-cb1ad16894b00e822257d16b3a700bfd995f74f46c124b56f8a8d8c6b0afeddb3</originalsourceid><addsrcrecordid>eNp1kMFO3DAQhq2qqAvbSn0CZKkXLoGx4zjxEa2gC0LiAufIdsatIYmpvQHtjUfgGfskeFkKElJP45E_ff_oJ-Q7g0MGwI9-oz0UFas_kV0GShUMKvi8eVd1oXgJM7KX0g1A_gP5hczKSkhgQu2S82Ma8VfElHwYqYt6wIcQb6kLkWp6F4PRxvc-rbylA-o0RaTBURvS6u_jEzqHduXvccyCr2TH6T7ht9c5J9enJ1eLZXFx-fNscXxR2JLzurCG6Y7JRgkDgA3nvKrzbkpdAxjXKVW5WjghLePCVNI1uukaKw1oh11nyjk52HrzdX8mTKt28Mli3-sRw5RaLivBVd3IMqM_PqA3YYpjvi5TdakaKJV8F9oYUoro2rvoBx3XLYN202-b-203_WZ0_1U4mQG7N_BfoRmgWwBtGH16NzUMcqAUkJFiizz4Htf_zWqXJ4uXzGfUUY6R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673980396</pqid></control><display><type>article</type><title>A regression framework for a probabilistic measure of cost‐effectiveness</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>PAIS Index</source><creator>Illenberger, Nicholas ; Mitra, Nandita ; Spieker, Andrew J.</creator><creatorcontrib>Illenberger, Nicholas ; Mitra, Nandita ; Spieker, Andrew J.</creatorcontrib><description>To make informed health policy decisions regarding a treatment, we must consider both its cost and its clinical effectiveness. In past work, we introduced the net benefit separation (NBS) as a novel measure of cost‐effectiveness. The NBS is a probabilistic measure that characterizes the extent to which a treated patient will be more likely to experience benefit as compared to an untreated patient. Due to variation in treatment response across patients, uncovering factors that influence cost‐effectiveness can assist policy makers in population‐level decisions regarding resource allocation. In this paper, we introduce a regression framework for NBS in order to estimate covariate‐specific NBS and find determinants of variation in NBS. Our approach is able to accommodate informative cost censoring through inverse probability weighting techniques, and addresses confounding through a semiparametric standardization procedure. Through simulations, we show that NBS regression performs well in a variety of common scenarios. We apply our proposed regression procedure to a realistic simulated data set as an illustration of how our approach could be used to investigate the association between cancer stage, comorbidities and cost‐effectiveness when comparing adjuvant radiation therapy and chemotherapy in post‐hysterectomy endometrial cancer patients.</description><identifier>ISSN: 1057-9230</identifier><identifier>EISSN: 1099-1050</identifier><identifier>DOI: 10.1002/hec.4517</identifier><identifier>PMID: 35460149</identifier><language>eng</language><publisher>England: Wiley Periodicals Inc</publisher><subject>Cancer ; censoring ; Chemotherapy ; Clinical effectiveness ; Cost analysis ; Cost-Benefit Analysis ; cost‐effecitveness ; Effectiveness ; Endometrial cancer ; Female ; Health care expenditures ; Health care policy ; Health economics ; Humans ; Hysterectomy ; Medical treatment ; observational ; Patients ; Policy making ; Population policy ; Radiation ; Resource allocation ; Standardization ; stochastic ordering ; Treatment Outcome ; Weighting</subject><ispartof>Health economics, 2022-07, Vol.31 (7), p.1438-1451</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3227-cb1ad16894b00e822257d16b3a700bfd995f74f46c124b56f8a8d8c6b0afeddb3</citedby><cites>FETCH-LOGICAL-c3227-cb1ad16894b00e822257d16b3a700bfd995f74f46c124b56f8a8d8c6b0afeddb3</cites><orcidid>0000-0003-4967-0390 ; 0000-0002-0548-8311</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhec.4517$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhec.4517$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27843,27901,27902,30976,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35460149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Illenberger, Nicholas</creatorcontrib><creatorcontrib>Mitra, Nandita</creatorcontrib><creatorcontrib>Spieker, Andrew J.</creatorcontrib><title>A regression framework for a probabilistic measure of cost‐effectiveness</title><title>Health economics</title><addtitle>Health Econ</addtitle><description>To make informed health policy decisions regarding a treatment, we must consider both its cost and its clinical effectiveness. In past work, we introduced the net benefit separation (NBS) as a novel measure of cost‐effectiveness. The NBS is a probabilistic measure that characterizes the extent to which a treated patient will be more likely to experience benefit as compared to an untreated patient. Due to variation in treatment response across patients, uncovering factors that influence cost‐effectiveness can assist policy makers in population‐level decisions regarding resource allocation. In this paper, we introduce a regression framework for NBS in order to estimate covariate‐specific NBS and find determinants of variation in NBS. Our approach is able to accommodate informative cost censoring through inverse probability weighting techniques, and addresses confounding through a semiparametric standardization procedure. Through simulations, we show that NBS regression performs well in a variety of common scenarios. We apply our proposed regression procedure to a realistic simulated data set as an illustration of how our approach could be used to investigate the association between cancer stage, comorbidities and cost‐effectiveness when comparing adjuvant radiation therapy and chemotherapy in post‐hysterectomy endometrial cancer patients.</description><subject>Cancer</subject><subject>censoring</subject><subject>Chemotherapy</subject><subject>Clinical effectiveness</subject><subject>Cost analysis</subject><subject>Cost-Benefit Analysis</subject><subject>cost‐effecitveness</subject><subject>Effectiveness</subject><subject>Endometrial cancer</subject><subject>Female</subject><subject>Health care expenditures</subject><subject>Health care policy</subject><subject>Health economics</subject><subject>Humans</subject><subject>Hysterectomy</subject><subject>Medical treatment</subject><subject>observational</subject><subject>Patients</subject><subject>Policy making</subject><subject>Population policy</subject><subject>Radiation</subject><subject>Resource allocation</subject><subject>Standardization</subject><subject>stochastic ordering</subject><subject>Treatment Outcome</subject><subject>Weighting</subject><issn>1057-9230</issn><issn>1099-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><sourceid>7TQ</sourceid><recordid>eNp1kMFO3DAQhq2qqAvbSn0CZKkXLoGx4zjxEa2gC0LiAufIdsatIYmpvQHtjUfgGfskeFkKElJP45E_ff_oJ-Q7g0MGwI9-oz0UFas_kV0GShUMKvi8eVd1oXgJM7KX0g1A_gP5hczKSkhgQu2S82Ma8VfElHwYqYt6wIcQb6kLkWp6F4PRxvc-rbylA-o0RaTBURvS6u_jEzqHduXvccyCr2TH6T7ht9c5J9enJ1eLZXFx-fNscXxR2JLzurCG6Y7JRgkDgA3nvKrzbkpdAxjXKVW5WjghLePCVNI1uukaKw1oh11nyjk52HrzdX8mTKt28Mli3-sRw5RaLivBVd3IMqM_PqA3YYpjvi5TdakaKJV8F9oYUoro2rvoBx3XLYN202-b-203_WZ0_1U4mQG7N_BfoRmgWwBtGH16NzUMcqAUkJFiizz4Htf_zWqXJ4uXzGfUUY6R</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Illenberger, Nicholas</creator><creator>Mitra, Nandita</creator><creator>Spieker, Andrew J.</creator><general>Wiley Periodicals Inc</general><scope>OQ6</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7TQ</scope><scope>DHY</scope><scope>DON</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4967-0390</orcidid><orcidid>https://orcid.org/0000-0002-0548-8311</orcidid></search><sort><creationdate>202207</creationdate><title>A regression framework for a probabilistic measure of cost‐effectiveness</title><author>Illenberger, Nicholas ; Mitra, Nandita ; Spieker, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3227-cb1ad16894b00e822257d16b3a700bfd995f74f46c124b56f8a8d8c6b0afeddb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cancer</topic><topic>censoring</topic><topic>Chemotherapy</topic><topic>Clinical effectiveness</topic><topic>Cost analysis</topic><topic>Cost-Benefit Analysis</topic><topic>cost‐effecitveness</topic><topic>Effectiveness</topic><topic>Endometrial cancer</topic><topic>Female</topic><topic>Health care expenditures</topic><topic>Health care policy</topic><topic>Health economics</topic><topic>Humans</topic><topic>Hysterectomy</topic><topic>Medical treatment</topic><topic>observational</topic><topic>Patients</topic><topic>Policy making</topic><topic>Population policy</topic><topic>Radiation</topic><topic>Resource allocation</topic><topic>Standardization</topic><topic>stochastic ordering</topic><topic>Treatment Outcome</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Illenberger, Nicholas</creatorcontrib><creatorcontrib>Mitra, Nandita</creatorcontrib><creatorcontrib>Spieker, Andrew J.</creatorcontrib><collection>ECONIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>PAIS Index</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>MEDLINE - Academic</collection><jtitle>Health economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Illenberger, Nicholas</au><au>Mitra, Nandita</au><au>Spieker, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A regression framework for a probabilistic measure of cost‐effectiveness</atitle><jtitle>Health economics</jtitle><addtitle>Health Econ</addtitle><date>2022-07</date><risdate>2022</risdate><volume>31</volume><issue>7</issue><spage>1438</spage><epage>1451</epage><pages>1438-1451</pages><issn>1057-9230</issn><eissn>1099-1050</eissn><abstract>To make informed health policy decisions regarding a treatment, we must consider both its cost and its clinical effectiveness. In past work, we introduced the net benefit separation (NBS) as a novel measure of cost‐effectiveness. The NBS is a probabilistic measure that characterizes the extent to which a treated patient will be more likely to experience benefit as compared to an untreated patient. Due to variation in treatment response across patients, uncovering factors that influence cost‐effectiveness can assist policy makers in population‐level decisions regarding resource allocation. In this paper, we introduce a regression framework for NBS in order to estimate covariate‐specific NBS and find determinants of variation in NBS. Our approach is able to accommodate informative cost censoring through inverse probability weighting techniques, and addresses confounding through a semiparametric standardization procedure. Through simulations, we show that NBS regression performs well in a variety of common scenarios. We apply our proposed regression procedure to a realistic simulated data set as an illustration of how our approach could be used to investigate the association between cancer stage, comorbidities and cost‐effectiveness when comparing adjuvant radiation therapy and chemotherapy in post‐hysterectomy endometrial cancer patients.</abstract><cop>England</cop><pub>Wiley Periodicals Inc</pub><pmid>35460149</pmid><doi>10.1002/hec.4517</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4967-0390</orcidid><orcidid>https://orcid.org/0000-0002-0548-8311</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-9230 |
ispartof | Health economics, 2022-07, Vol.31 (7), p.1438-1451 |
issn | 1057-9230 1099-1050 |
language | eng |
recordid | cdi_proquest_miscellaneous_2654297863 |
source | Applied Social Sciences Index & Abstracts (ASSIA); MEDLINE; Wiley Online Library Journals Frontfile Complete; PAIS Index |
subjects | Cancer censoring Chemotherapy Clinical effectiveness Cost analysis Cost-Benefit Analysis cost‐effecitveness Effectiveness Endometrial cancer Female Health care expenditures Health care policy Health economics Humans Hysterectomy Medical treatment observational Patients Policy making Population policy Radiation Resource allocation Standardization stochastic ordering Treatment Outcome Weighting |
title | A regression framework for a probabilistic measure of cost‐effectiveness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A34%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20regression%20framework%20for%20a%20probabilistic%20measure%20of%20cost%E2%80%90effectiveness&rft.jtitle=Health%20economics&rft.au=Illenberger,%20Nicholas&rft.date=2022-07&rft.volume=31&rft.issue=7&rft.spage=1438&rft.epage=1451&rft.pages=1438-1451&rft.issn=1057-9230&rft.eissn=1099-1050&rft_id=info:doi/10.1002/hec.4517&rft_dat=%3Cproquest_cross%3E2654297863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673980396&rft_id=info:pmid/35460149&rfr_iscdi=true |