ZIF-8@MXene-reinforced flame-retardant and highly conductive polymer composite electrolyte for dendrite-free lithium metal batteries

A ZIF-8@MXene nanosheet reinforced polymer composite electrolyte was developed. In this electrolyte, abundant interactions and ion transport channels were generated by virtue of well-compatibility and plentiful functional groups and Lewis acid sites, enabling to high ionic conductivity and superior...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2022-08, Vol.620, p.478-485
Hauptverfasser: Zhao, Xufeng, Zhu, Mengqi, Tang, Conggu, Quan, Kechun, Tong, Qingsong, Cao, Hewei, Jiang, Jiacheng, Yang, Hongtao, Zhang, Jindan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 485
container_issue
container_start_page 478
container_title Journal of colloid and interface science
container_volume 620
creator Zhao, Xufeng
Zhu, Mengqi
Tang, Conggu
Quan, Kechun
Tong, Qingsong
Cao, Hewei
Jiang, Jiacheng
Yang, Hongtao
Zhang, Jindan
description A ZIF-8@MXene nanosheet reinforced polymer composite electrolyte was developed. In this electrolyte, abundant interactions and ion transport channels were generated by virtue of well-compatibility and plentiful functional groups and Lewis acid sites, enabling to high ionic conductivity and superior thermostability and flame retardance. This shows splendid potential for developing polymer electrolytes by cooperating two dimensional materials with MOFs. [Display omitted] •Developed Ti3C2-MXene nanosheets with horizontally extended ZIF-8 on the surface (ZIF-8@MXene) and a well compatible polymer composite electrolyte (PE- ZIF-8@MXene).•ZIF-8@MXene decreased the coupling of Li ion and polymer chain and provided ion transport channels to improve Li+ transportation.•Intrinsically stable ZIF-8@MXene enhanced the thermostability and flame resistance of electrolyte.•PE-ZIF-8@MXene presented a high ionic conductivity of 4.4 mS cm−1.•Assembled lithium batteries revealed a long cycling life up to 2000 h at 0.5 mA cm−2. Though polymer electrolytes have been regarded as promising separators for solid-state lithium metal batteries, their low ionic conductivity, poor thermostability and inflammability limit their practical applications. Herein, a polymer composite electrolyte consisting of metal–organic frameworks modified Ti3C2-MXene nanosheets (ZIF-8@MXene) and polymer mixture (PE-ZIF-8@MXene) was fabricated. The fabricated nonflammable ZIF-8@MXene nanosheets have abundant functional groups and Lewis acid sites as well as high specific surface area. In the composite electrolyte, ZIF-8@MXene nanosheets increased the dissociation of lithium salts and provided channels for transporting ions, accelerating the Li ion transportation. They also enhanced the tensile strength, thermostability and flame resistance of PE-ZIF-8@MXene. Consequently, the fabricated flame-retardant PE-ZIF-8@MXene presented high ionic conductivity (4.4 mS cm−1), impressive Li+ transference number (0.76) and enhanced tensile strength (3.77 MPa). In addition, the assembled Li|PE-ZIF-8@MXene|Li had a long cycle life of 2000 h, and Li|PE-ZIF-8@MXene|LiFePO4 batteries displayed a capacity retention of 89.6% after 500 cycles.
doi_str_mv 10.1016/j.jcis.2022.04.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2654293789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979722005690</els_id><sourcerecordid>2654293789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-4e8cc14a96ab7f9842041d6fa35e459b107fd82bfcbe861a121185cc3e93f13c3</originalsourceid><addsrcrecordid>eNp9kEFvFCEYhonR2LX6BzwYjl5mCgzMQOJB01jbpKaXmhgvhIEPlw0zswLTZO_-cNls7bGn78vL-z0JD0LvKWkpof3Frt3ZkFtGGGsJbwmVL9CGEiWagZLuJdoQwmijBjWcoTc57wihVAj1Gp11ggumuNigv79urhr5-ftPmKFJEGa_JAsO-2imY1BMcmYu2MwOb8PvbTxgu8xutSU8AN4v8TBBqtG0X3IogCGCLanGda8o7GB2qT40PgHgGMo2rBOeKjfi0ZQCKUB-i155EzO8e5zn6MfV1_vL6-b27tvN5ZfbxjLZl4aDtJZyo3ozDl5JzginrvemE8CFGikZvJNs9HYE2VNDGaVSWNuB6jztbHeOPp64-7T8WSEXPYVsIUYzw7JmzXrBmeoGqWqVnao2LTkn8HqfwmTSQVOij_b1Th_t66N9Tbiu9uvRh0f-Ok7gnk7-666FT6cC1F8-BEg62wBzFR5S9abdEp7j_wMBoJkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2654293789</pqid></control><display><type>article</type><title>ZIF-8@MXene-reinforced flame-retardant and highly conductive polymer composite electrolyte for dendrite-free lithium metal batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Zhao, Xufeng ; Zhu, Mengqi ; Tang, Conggu ; Quan, Kechun ; Tong, Qingsong ; Cao, Hewei ; Jiang, Jiacheng ; Yang, Hongtao ; Zhang, Jindan</creator><creatorcontrib>Zhao, Xufeng ; Zhu, Mengqi ; Tang, Conggu ; Quan, Kechun ; Tong, Qingsong ; Cao, Hewei ; Jiang, Jiacheng ; Yang, Hongtao ; Zhang, Jindan</creatorcontrib><description>A ZIF-8@MXene nanosheet reinforced polymer composite electrolyte was developed. In this electrolyte, abundant interactions and ion transport channels were generated by virtue of well-compatibility and plentiful functional groups and Lewis acid sites, enabling to high ionic conductivity and superior thermostability and flame retardance. This shows splendid potential for developing polymer electrolytes by cooperating two dimensional materials with MOFs. [Display omitted] •Developed Ti3C2-MXene nanosheets with horizontally extended ZIF-8 on the surface (ZIF-8@MXene) and a well compatible polymer composite electrolyte (PE- ZIF-8@MXene).•ZIF-8@MXene decreased the coupling of Li ion and polymer chain and provided ion transport channels to improve Li+ transportation.•Intrinsically stable ZIF-8@MXene enhanced the thermostability and flame resistance of electrolyte.•PE-ZIF-8@MXene presented a high ionic conductivity of 4.4 mS cm−1.•Assembled lithium batteries revealed a long cycling life up to 2000 h at 0.5 mA cm−2. Though polymer electrolytes have been regarded as promising separators for solid-state lithium metal batteries, their low ionic conductivity, poor thermostability and inflammability limit their practical applications. Herein, a polymer composite electrolyte consisting of metal–organic frameworks modified Ti3C2-MXene nanosheets (ZIF-8@MXene) and polymer mixture (PE-ZIF-8@MXene) was fabricated. The fabricated nonflammable ZIF-8@MXene nanosheets have abundant functional groups and Lewis acid sites as well as high specific surface area. In the composite electrolyte, ZIF-8@MXene nanosheets increased the dissociation of lithium salts and provided channels for transporting ions, accelerating the Li ion transportation. They also enhanced the tensile strength, thermostability and flame resistance of PE-ZIF-8@MXene. Consequently, the fabricated flame-retardant PE-ZIF-8@MXene presented high ionic conductivity (4.4 mS cm−1), impressive Li+ transference number (0.76) and enhanced tensile strength (3.77 MPa). In addition, the assembled Li|PE-ZIF-8@MXene|Li had a long cycle life of 2000 h, and Li|PE-ZIF-8@MXene|LiFePO4 batteries displayed a capacity retention of 89.6% after 500 cycles.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2022.04.018</identifier><identifier>PMID: 35452945</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Flame-retardant ; Lithium metal batteries ; Metal-organic frameworks ; MXene ; Polymer electrolyte</subject><ispartof>Journal of colloid and interface science, 2022-08, Vol.620, p.478-485</ispartof><rights>2022 Elsevier Inc.</rights><rights>Copyright © 2022 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-4e8cc14a96ab7f9842041d6fa35e459b107fd82bfcbe861a121185cc3e93f13c3</citedby><cites>FETCH-LOGICAL-c286t-4e8cc14a96ab7f9842041d6fa35e459b107fd82bfcbe861a121185cc3e93f13c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2022.04.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35452945$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Xufeng</creatorcontrib><creatorcontrib>Zhu, Mengqi</creatorcontrib><creatorcontrib>Tang, Conggu</creatorcontrib><creatorcontrib>Quan, Kechun</creatorcontrib><creatorcontrib>Tong, Qingsong</creatorcontrib><creatorcontrib>Cao, Hewei</creatorcontrib><creatorcontrib>Jiang, Jiacheng</creatorcontrib><creatorcontrib>Yang, Hongtao</creatorcontrib><creatorcontrib>Zhang, Jindan</creatorcontrib><title>ZIF-8@MXene-reinforced flame-retardant and highly conductive polymer composite electrolyte for dendrite-free lithium metal batteries</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>A ZIF-8@MXene nanosheet reinforced polymer composite electrolyte was developed. In this electrolyte, abundant interactions and ion transport channels were generated by virtue of well-compatibility and plentiful functional groups and Lewis acid sites, enabling to high ionic conductivity and superior thermostability and flame retardance. This shows splendid potential for developing polymer electrolytes by cooperating two dimensional materials with MOFs. [Display omitted] •Developed Ti3C2-MXene nanosheets with horizontally extended ZIF-8 on the surface (ZIF-8@MXene) and a well compatible polymer composite electrolyte (PE- ZIF-8@MXene).•ZIF-8@MXene decreased the coupling of Li ion and polymer chain and provided ion transport channels to improve Li+ transportation.•Intrinsically stable ZIF-8@MXene enhanced the thermostability and flame resistance of electrolyte.•PE-ZIF-8@MXene presented a high ionic conductivity of 4.4 mS cm−1.•Assembled lithium batteries revealed a long cycling life up to 2000 h at 0.5 mA cm−2. Though polymer electrolytes have been regarded as promising separators for solid-state lithium metal batteries, their low ionic conductivity, poor thermostability and inflammability limit their practical applications. Herein, a polymer composite electrolyte consisting of metal–organic frameworks modified Ti3C2-MXene nanosheets (ZIF-8@MXene) and polymer mixture (PE-ZIF-8@MXene) was fabricated. The fabricated nonflammable ZIF-8@MXene nanosheets have abundant functional groups and Lewis acid sites as well as high specific surface area. In the composite electrolyte, ZIF-8@MXene nanosheets increased the dissociation of lithium salts and provided channels for transporting ions, accelerating the Li ion transportation. They also enhanced the tensile strength, thermostability and flame resistance of PE-ZIF-8@MXene. Consequently, the fabricated flame-retardant PE-ZIF-8@MXene presented high ionic conductivity (4.4 mS cm−1), impressive Li+ transference number (0.76) and enhanced tensile strength (3.77 MPa). In addition, the assembled Li|PE-ZIF-8@MXene|Li had a long cycle life of 2000 h, and Li|PE-ZIF-8@MXene|LiFePO4 batteries displayed a capacity retention of 89.6% after 500 cycles.</description><subject>Flame-retardant</subject><subject>Lithium metal batteries</subject><subject>Metal-organic frameworks</subject><subject>MXene</subject><subject>Polymer electrolyte</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEFvFCEYhonR2LX6BzwYjl5mCgzMQOJB01jbpKaXmhgvhIEPlw0zswLTZO_-cNls7bGn78vL-z0JD0LvKWkpof3Frt3ZkFtGGGsJbwmVL9CGEiWagZLuJdoQwmijBjWcoTc57wihVAj1Gp11ggumuNigv79urhr5-ftPmKFJEGa_JAsO-2imY1BMcmYu2MwOb8PvbTxgu8xutSU8AN4v8TBBqtG0X3IogCGCLanGda8o7GB2qT40PgHgGMo2rBOeKjfi0ZQCKUB-i155EzO8e5zn6MfV1_vL6-b27tvN5ZfbxjLZl4aDtJZyo3ozDl5JzginrvemE8CFGikZvJNs9HYE2VNDGaVSWNuB6jztbHeOPp64-7T8WSEXPYVsIUYzw7JmzXrBmeoGqWqVnao2LTkn8HqfwmTSQVOij_b1Th_t66N9Tbiu9uvRh0f-Ok7gnk7-666FT6cC1F8-BEg62wBzFR5S9abdEp7j_wMBoJkA</recordid><startdate>20220815</startdate><enddate>20220815</enddate><creator>Zhao, Xufeng</creator><creator>Zhu, Mengqi</creator><creator>Tang, Conggu</creator><creator>Quan, Kechun</creator><creator>Tong, Qingsong</creator><creator>Cao, Hewei</creator><creator>Jiang, Jiacheng</creator><creator>Yang, Hongtao</creator><creator>Zhang, Jindan</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20220815</creationdate><title>ZIF-8@MXene-reinforced flame-retardant and highly conductive polymer composite electrolyte for dendrite-free lithium metal batteries</title><author>Zhao, Xufeng ; Zhu, Mengqi ; Tang, Conggu ; Quan, Kechun ; Tong, Qingsong ; Cao, Hewei ; Jiang, Jiacheng ; Yang, Hongtao ; Zhang, Jindan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-4e8cc14a96ab7f9842041d6fa35e459b107fd82bfcbe861a121185cc3e93f13c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Flame-retardant</topic><topic>Lithium metal batteries</topic><topic>Metal-organic frameworks</topic><topic>MXene</topic><topic>Polymer electrolyte</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xufeng</creatorcontrib><creatorcontrib>Zhu, Mengqi</creatorcontrib><creatorcontrib>Tang, Conggu</creatorcontrib><creatorcontrib>Quan, Kechun</creatorcontrib><creatorcontrib>Tong, Qingsong</creatorcontrib><creatorcontrib>Cao, Hewei</creatorcontrib><creatorcontrib>Jiang, Jiacheng</creatorcontrib><creatorcontrib>Yang, Hongtao</creatorcontrib><creatorcontrib>Zhang, Jindan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Xufeng</au><au>Zhu, Mengqi</au><au>Tang, Conggu</au><au>Quan, Kechun</au><au>Tong, Qingsong</au><au>Cao, Hewei</au><au>Jiang, Jiacheng</au><au>Yang, Hongtao</au><au>Zhang, Jindan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ZIF-8@MXene-reinforced flame-retardant and highly conductive polymer composite electrolyte for dendrite-free lithium metal batteries</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2022-08-15</date><risdate>2022</risdate><volume>620</volume><spage>478</spage><epage>485</epage><pages>478-485</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>A ZIF-8@MXene nanosheet reinforced polymer composite electrolyte was developed. In this electrolyte, abundant interactions and ion transport channels were generated by virtue of well-compatibility and plentiful functional groups and Lewis acid sites, enabling to high ionic conductivity and superior thermostability and flame retardance. This shows splendid potential for developing polymer electrolytes by cooperating two dimensional materials with MOFs. [Display omitted] •Developed Ti3C2-MXene nanosheets with horizontally extended ZIF-8 on the surface (ZIF-8@MXene) and a well compatible polymer composite electrolyte (PE- ZIF-8@MXene).•ZIF-8@MXene decreased the coupling of Li ion and polymer chain and provided ion transport channels to improve Li+ transportation.•Intrinsically stable ZIF-8@MXene enhanced the thermostability and flame resistance of electrolyte.•PE-ZIF-8@MXene presented a high ionic conductivity of 4.4 mS cm−1.•Assembled lithium batteries revealed a long cycling life up to 2000 h at 0.5 mA cm−2. Though polymer electrolytes have been regarded as promising separators for solid-state lithium metal batteries, their low ionic conductivity, poor thermostability and inflammability limit their practical applications. Herein, a polymer composite electrolyte consisting of metal–organic frameworks modified Ti3C2-MXene nanosheets (ZIF-8@MXene) and polymer mixture (PE-ZIF-8@MXene) was fabricated. The fabricated nonflammable ZIF-8@MXene nanosheets have abundant functional groups and Lewis acid sites as well as high specific surface area. In the composite electrolyte, ZIF-8@MXene nanosheets increased the dissociation of lithium salts and provided channels for transporting ions, accelerating the Li ion transportation. They also enhanced the tensile strength, thermostability and flame resistance of PE-ZIF-8@MXene. Consequently, the fabricated flame-retardant PE-ZIF-8@MXene presented high ionic conductivity (4.4 mS cm−1), impressive Li+ transference number (0.76) and enhanced tensile strength (3.77 MPa). In addition, the assembled Li|PE-ZIF-8@MXene|Li had a long cycle life of 2000 h, and Li|PE-ZIF-8@MXene|LiFePO4 batteries displayed a capacity retention of 89.6% after 500 cycles.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35452945</pmid><doi>10.1016/j.jcis.2022.04.018</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2022-08, Vol.620, p.478-485
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2654293789
source Elsevier ScienceDirect Journals
subjects Flame-retardant
Lithium metal batteries
Metal-organic frameworks
MXene
Polymer electrolyte
title ZIF-8@MXene-reinforced flame-retardant and highly conductive polymer composite electrolyte for dendrite-free lithium metal batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ZIF-8@MXene-reinforced%20flame-retardant%20and%20highly%20conductive%20polymer%20composite%20electrolyte%20for%20dendrite-free%20lithium%20metal%20batteries&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Zhao,%20Xufeng&rft.date=2022-08-15&rft.volume=620&rft.spage=478&rft.epage=485&rft.pages=478-485&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2022.04.018&rft_dat=%3Cproquest_cross%3E2654293789%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2654293789&rft_id=info:pmid/35452945&rft_els_id=S0021979722005690&rfr_iscdi=true