NEDD9 links anaplastic thyroid cancer stemness to chromosomal instability through integrated centrosome asymmetry and DNA sensing regulation

Stemness and chromosomal instability (CIN) are two common contributors to intratumor heterogeneity and therapy relapse in advanced cancer, but their interplays are poorly defined. Here, in anaplastic thyroid cancer (ATC), we show that ALDH+ stem-like cancer cells possess increased CIN-tolerance owin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2022-05, Vol.41 (21), p.2984-2999
Hauptverfasser: Yu, Henry G., Bijian, Krikor, da Silva, Sabrina D., Su, Jie, Morand, Gregoire, Spatz, Alan, Alaoui-Jamali, Moulay A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stemness and chromosomal instability (CIN) are two common contributors to intratumor heterogeneity and therapy relapse in advanced cancer, but their interplays are poorly defined. Here, in anaplastic thyroid cancer (ATC), we show that ALDH+ stem-like cancer cells possess increased CIN-tolerance owing to transcriptional upregulation of the scaffolding protein NEDD9. Thyroid patient tissues and transcriptomic data reveals NEDD9/ALDH1A3 to be co-expressed and co-upregulated in ATC. Compared to bulk ALDH− cells, ALDH+ cells were highly efficient at propagating CIN due to their intrinsic tolerance of both centrosome amplification and micronuclei. ALDH+ cells mitigated the fitness-impairing effects of centrosome amplification by partially inactivating supernumerary centrosomes. Meanwhile, ALDH+ cells also mitigated cell death caused by micronuclei-mediated type 1 interferon secretion by suppressing the expression of the DNA-sensor protein STING. Both mechanisms of CIN-tolerance were lost upon RNAi-mediated NEDD9 silencing. Both in vitro and in vivo, NEDD9-depletion attenuated stemness, CIN, cell/tumor growth, while enhancing paclitaxel effectiveness. Collectively, these findings reveal that ATC progression can involve an ALDH1A3/NEDD9-regulated program linking their stemness to CIN-tolerance that could be leveraged for ATC treatment.
ISSN:0950-9232
1476-5594
DOI:10.1038/s41388-022-02317-7