One-Pot Preparation of Lithium Compensation Layer, Lithiophilic Layer, and Artificial Solid Electrolyte Interphase for Lean-Lithium Metal Anode
Lithium metal is an ideal anode for high-energy-density batteries. However, the low Coulomb efficiency and the generation of dendrites pose a significant limitation to its practical application, while the excess lithium in the battery also generates serious safety concerns. Herein, a layer-by-layer...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-05, Vol.14 (17), p.19437-19447 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19447 |
---|---|
container_issue | 17 |
container_start_page | 19437 |
container_title | ACS applied materials & interfaces |
container_volume | 14 |
creator | Li, Cheng Li, Yan Yu, Yongkun Shen, Chunli Zhou, Cheng Dong, Chenxu Zhao, Tianhao Xu, Xu |
description | Lithium metal is an ideal anode for high-energy-density batteries. However, the low Coulomb efficiency and the generation of dendrites pose a significant limitation to its practical application, while the excess lithium in the battery also generates serious safety concerns. Herein, a layer-by-layer optimized multilayer structure integrating an artificial solid electrolyte interphase (LiF) layer, a lithiophilic (Li x Au alloy) layer, and a lithium compensation layer is reported for a lean-lithium metal battery, where each layer acts synergistically to stabilize the lithium deposition behaviors and enhances the cycling performance of the battery. The optimized anode could effectively induce homogeneous reversible lithium deposition under the synergistic effect of multilayer films and keep the integrity of the morphological structure unbroken during the deposition. The presence of the lithium compensation layer allows the half-cell to have a high initial CE of 158.9%, and the action of the LiF layer and lithiophilic layer maintains an average CE of 98.8% over 160 cycles, which further demonstrates the stability of the structure. As a result, when combined with LiFePO4 cathode, an initial capacity of 148 mAh g–1 and a retention rate of 97.5% over 130 cycles were achieved. |
doi_str_mv | 10.1021/acsami.2c01716 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2654278674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2654278674</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-e25c27e60c3e8504d62ade9f6082f103e90b4f81137a4827ba71d813d1db25973</originalsourceid><addsrcrecordid>eNp1kTtPwzAUhS0EolBYGZFHhEjxK4-OVcWjUhBIwBy59o1qlNjBdob-Cv4yQWm7Mdk6_s65uj4IXVEyo4TRe6mCbM2MKUJzmh2hMzoXIilYyo4PdyEm6DyEL0Iyzkh6iiY8FSktWHaGfl4tJG8u4jcPnfQyGmexq3Fp4sb0LV66tgMbRr2UW_B345vrNqYxaq9Jq_HCR1MbZWSD311jNH5oQEXvmm0EvLIRfLeRAXDtPC5B2mQ_5AXi4FlYp-ECndSyCXC5O6fo8_HhY_mclK9Pq-WiTCTnJCbAUsVyyIjiUKRE6IxJDfM6IwWrKeEwJ2tRF5TyXIqC5WuZU11Qrqles3Se8ym6GXM77757CLFqTVDQNNKC60PFslSwvMhyMaCzEVXeheChrjpvWum3FSXVXwnVWEK1K2EwXO-y-3UL-oDvf30AbkdgMFZfrvd2WPW_tF_-c5KZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2654278674</pqid></control><display><type>article</type><title>One-Pot Preparation of Lithium Compensation Layer, Lithiophilic Layer, and Artificial Solid Electrolyte Interphase for Lean-Lithium Metal Anode</title><source>ACS Publications</source><creator>Li, Cheng ; Li, Yan ; Yu, Yongkun ; Shen, Chunli ; Zhou, Cheng ; Dong, Chenxu ; Zhao, Tianhao ; Xu, Xu</creator><creatorcontrib>Li, Cheng ; Li, Yan ; Yu, Yongkun ; Shen, Chunli ; Zhou, Cheng ; Dong, Chenxu ; Zhao, Tianhao ; Xu, Xu</creatorcontrib><description>Lithium metal is an ideal anode for high-energy-density batteries. However, the low Coulomb efficiency and the generation of dendrites pose a significant limitation to its practical application, while the excess lithium in the battery also generates serious safety concerns. Herein, a layer-by-layer optimized multilayer structure integrating an artificial solid electrolyte interphase (LiF) layer, a lithiophilic (Li x Au alloy) layer, and a lithium compensation layer is reported for a lean-lithium metal battery, where each layer acts synergistically to stabilize the lithium deposition behaviors and enhances the cycling performance of the battery. The optimized anode could effectively induce homogeneous reversible lithium deposition under the synergistic effect of multilayer films and keep the integrity of the morphological structure unbroken during the deposition. The presence of the lithium compensation layer allows the half-cell to have a high initial CE of 158.9%, and the action of the LiF layer and lithiophilic layer maintains an average CE of 98.8% over 160 cycles, which further demonstrates the stability of the structure. As a result, when combined with LiFePO4 cathode, an initial capacity of 148 mAh g–1 and a retention rate of 97.5% over 130 cycles were achieved.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c01716</identifier><identifier>PMID: 35451826</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials & interfaces, 2022-05, Vol.14 (17), p.19437-19447</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-e25c27e60c3e8504d62ade9f6082f103e90b4f81137a4827ba71d813d1db25973</citedby><cites>FETCH-LOGICAL-a330t-e25c27e60c3e8504d62ade9f6082f103e90b4f81137a4827ba71d813d1db25973</cites><orcidid>0000-0002-3309-7596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c01716$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c01716$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35451826$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Yu, Yongkun</creatorcontrib><creatorcontrib>Shen, Chunli</creatorcontrib><creatorcontrib>Zhou, Cheng</creatorcontrib><creatorcontrib>Dong, Chenxu</creatorcontrib><creatorcontrib>Zhao, Tianhao</creatorcontrib><creatorcontrib>Xu, Xu</creatorcontrib><title>One-Pot Preparation of Lithium Compensation Layer, Lithiophilic Layer, and Artificial Solid Electrolyte Interphase for Lean-Lithium Metal Anode</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Lithium metal is an ideal anode for high-energy-density batteries. However, the low Coulomb efficiency and the generation of dendrites pose a significant limitation to its practical application, while the excess lithium in the battery also generates serious safety concerns. Herein, a layer-by-layer optimized multilayer structure integrating an artificial solid electrolyte interphase (LiF) layer, a lithiophilic (Li x Au alloy) layer, and a lithium compensation layer is reported for a lean-lithium metal battery, where each layer acts synergistically to stabilize the lithium deposition behaviors and enhances the cycling performance of the battery. The optimized anode could effectively induce homogeneous reversible lithium deposition under the synergistic effect of multilayer films and keep the integrity of the morphological structure unbroken during the deposition. The presence of the lithium compensation layer allows the half-cell to have a high initial CE of 158.9%, and the action of the LiF layer and lithiophilic layer maintains an average CE of 98.8% over 160 cycles, which further demonstrates the stability of the structure. As a result, when combined with LiFePO4 cathode, an initial capacity of 148 mAh g–1 and a retention rate of 97.5% over 130 cycles were achieved.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kTtPwzAUhS0EolBYGZFHhEjxK4-OVcWjUhBIwBy59o1qlNjBdob-Cv4yQWm7Mdk6_s65uj4IXVEyo4TRe6mCbM2MKUJzmh2hMzoXIilYyo4PdyEm6DyEL0Iyzkh6iiY8FSktWHaGfl4tJG8u4jcPnfQyGmexq3Fp4sb0LV66tgMbRr2UW_B345vrNqYxaq9Jq_HCR1MbZWSD311jNH5oQEXvmm0EvLIRfLeRAXDtPC5B2mQ_5AXi4FlYp-ECndSyCXC5O6fo8_HhY_mclK9Pq-WiTCTnJCbAUsVyyIjiUKRE6IxJDfM6IwWrKeEwJ2tRF5TyXIqC5WuZU11Qrqles3Se8ym6GXM77757CLFqTVDQNNKC60PFslSwvMhyMaCzEVXeheChrjpvWum3FSXVXwnVWEK1K2EwXO-y-3UL-oDvf30AbkdgMFZfrvd2WPW_tF_-c5KZ</recordid><startdate>20220504</startdate><enddate>20220504</enddate><creator>Li, Cheng</creator><creator>Li, Yan</creator><creator>Yu, Yongkun</creator><creator>Shen, Chunli</creator><creator>Zhou, Cheng</creator><creator>Dong, Chenxu</creator><creator>Zhao, Tianhao</creator><creator>Xu, Xu</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3309-7596</orcidid></search><sort><creationdate>20220504</creationdate><title>One-Pot Preparation of Lithium Compensation Layer, Lithiophilic Layer, and Artificial Solid Electrolyte Interphase for Lean-Lithium Metal Anode</title><author>Li, Cheng ; Li, Yan ; Yu, Yongkun ; Shen, Chunli ; Zhou, Cheng ; Dong, Chenxu ; Zhao, Tianhao ; Xu, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-e25c27e60c3e8504d62ade9f6082f103e90b4f81137a4827ba71d813d1db25973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Yu, Yongkun</creatorcontrib><creatorcontrib>Shen, Chunli</creatorcontrib><creatorcontrib>Zhou, Cheng</creatorcontrib><creatorcontrib>Dong, Chenxu</creatorcontrib><creatorcontrib>Zhao, Tianhao</creatorcontrib><creatorcontrib>Xu, Xu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Cheng</au><au>Li, Yan</au><au>Yu, Yongkun</au><au>Shen, Chunli</au><au>Zhou, Cheng</au><au>Dong, Chenxu</au><au>Zhao, Tianhao</au><au>Xu, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-Pot Preparation of Lithium Compensation Layer, Lithiophilic Layer, and Artificial Solid Electrolyte Interphase for Lean-Lithium Metal Anode</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-05-04</date><risdate>2022</risdate><volume>14</volume><issue>17</issue><spage>19437</spage><epage>19447</epage><pages>19437-19447</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Lithium metal is an ideal anode for high-energy-density batteries. However, the low Coulomb efficiency and the generation of dendrites pose a significant limitation to its practical application, while the excess lithium in the battery also generates serious safety concerns. Herein, a layer-by-layer optimized multilayer structure integrating an artificial solid electrolyte interphase (LiF) layer, a lithiophilic (Li x Au alloy) layer, and a lithium compensation layer is reported for a lean-lithium metal battery, where each layer acts synergistically to stabilize the lithium deposition behaviors and enhances the cycling performance of the battery. The optimized anode could effectively induce homogeneous reversible lithium deposition under the synergistic effect of multilayer films and keep the integrity of the morphological structure unbroken during the deposition. The presence of the lithium compensation layer allows the half-cell to have a high initial CE of 158.9%, and the action of the LiF layer and lithiophilic layer maintains an average CE of 98.8% over 160 cycles, which further demonstrates the stability of the structure. As a result, when combined with LiFePO4 cathode, an initial capacity of 148 mAh g–1 and a retention rate of 97.5% over 130 cycles were achieved.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35451826</pmid><doi>10.1021/acsami.2c01716</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3309-7596</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2022-05, Vol.14 (17), p.19437-19447 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2654278674 |
source | ACS Publications |
subjects | Energy, Environmental, and Catalysis Applications |
title | One-Pot Preparation of Lithium Compensation Layer, Lithiophilic Layer, and Artificial Solid Electrolyte Interphase for Lean-Lithium Metal Anode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A39%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-Pot%20Preparation%20of%20Lithium%20Compensation%20Layer,%20Lithiophilic%20Layer,%20and%20Artificial%20Solid%20Electrolyte%20Interphase%20for%20Lean-Lithium%20Metal%20Anode&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Li,%20Cheng&rft.date=2022-05-04&rft.volume=14&rft.issue=17&rft.spage=19437&rft.epage=19447&rft.pages=19437-19447&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c01716&rft_dat=%3Cproquest_cross%3E2654278674%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2654278674&rft_id=info:pmid/35451826&rfr_iscdi=true |