RATCHETTING IN PRESSURISED PIPES

— The plastic deformation of thin‐walled cylinders has been experimentally examined for the loading conditions of ±1% axial strain with hoop stresses of approximately 0, 1/4, 1/2 and 3/4 of the initial uniaxial yield stress. Two materials similar to those used in the pipework of PWR nuclear plant in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fatigue & fracture of engineering materials & structures 1994-04, Vol.17 (4), p.497-500
Hauptverfasser: Rider, R. J., Harvey, S. J., Charles, I. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 500
container_issue 4
container_start_page 497
container_title Fatigue & fracture of engineering materials & structures
container_volume 17
creator Rider, R. J.
Harvey, S. J.
Charles, I. D.
description — The plastic deformation of thin‐walled cylinders has been experimentally examined for the loading conditions of ±1% axial strain with hoop stresses of approximately 0, 1/4, 1/2 and 3/4 of the initial uniaxial yield stress. Two materials similar to those used in the pipework of PWR nuclear plant in the U.K. have been tested, namely 304S11 stainless steel and En6 low‐carbon steel. The results of the tests were to be compared with the allowable stresses and deformations specified in the ASME Boiler and Pressure Vessel Code, Section III. The code specifies that a prescribed combination of primary stresses must not exceed 1.5Sm, where Sm is a stress value defined for each material. The results indicate that the limit of 1.5Sm is excessively low for both materials and that in particular, the stainless steel could tolerate 5Sm. Although the En6 steel is more prone to ratchetting than the stainless steel, the results suggest that it too could tolerate a higher primary stress than the code allows. Both materials are shown to satisfy the proposed ASME ratchet strain limit of 5% hoop strain after 10 cycles of ±1% axial strain range, for any value of internal pressure.
doi_str_mv 10.1111/j.1460-2695.1994.tb00248.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26542309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26542309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4147-495930afbbedd134bd79a1719b060a24d870880207033ac333b1cc647da35d3e3</originalsourceid><addsrcrecordid>eNqVkE9PwkAQxTdGExH9Do0x3lpnu_-6HkwIFmyC2FBQb5ttu02KRbALEb69bUq4O5c5zHu_yXsI3WLwcDMPSw9TDq7PJfOwlNTbpgA-Dbz9GeqdTueoFwjGXcGCz0t0Ze0SAHNKSA85s8F8-BLO59F07ERTJ56FSbKYRUn47MRRHCbX6KLQlTU3x91Hi1HYWNzJ2zgaDiZuRjEVLpVMEtBFmpo8x4SmuZAaCyxT4KB9mgcCggB8EECIzgghKc4yTkWuCcuJIX1033E39fpnZ-xWrUqbmarS32a9s8rnjPoEZCN87IRZvba2NoXa1OVK1weFQbWlqKVqk6s2uWpLUcdS1L4x3x2_aJvpqqj1d1baE4FiACZ4I3vqZL9lZQ7_eKBGo5BK0QDcDlDardmfALr-UlwQwdTHdKwYHiYxf39VmPwB9u6ANQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26542309</pqid></control><display><type>article</type><title>RATCHETTING IN PRESSURISED PIPES</title><source>Wiley Online Library All Journals</source><creator>Rider, R. J. ; Harvey, S. J. ; Charles, I. D.</creator><creatorcontrib>Rider, R. J. ; Harvey, S. J. ; Charles, I. D.</creatorcontrib><description>— The plastic deformation of thin‐walled cylinders has been experimentally examined for the loading conditions of ±1% axial strain with hoop stresses of approximately 0, 1/4, 1/2 and 3/4 of the initial uniaxial yield stress. Two materials similar to those used in the pipework of PWR nuclear plant in the U.K. have been tested, namely 304S11 stainless steel and En6 low‐carbon steel. The results of the tests were to be compared with the allowable stresses and deformations specified in the ASME Boiler and Pressure Vessel Code, Section III. The code specifies that a prescribed combination of primary stresses must not exceed 1.5Sm, where Sm is a stress value defined for each material. The results indicate that the limit of 1.5Sm is excessively low for both materials and that in particular, the stainless steel could tolerate 5Sm. Although the En6 steel is more prone to ratchetting than the stainless steel, the results suggest that it too could tolerate a higher primary stress than the code allows. Both materials are shown to satisfy the proposed ASME ratchet strain limit of 5% hoop strain after 10 cycles of ±1% axial strain range, for any value of internal pressure.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/j.1460-2695.1994.tb00248.x</identifier><identifier>CODEN: FFESEY</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; Condensed matter: structure, mechanical and thermal properties ; Deformation and plasticity (including yield, ductility, and superplasticity) ; Exact sciences and technology ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; Metals. Metallurgy ; Physics</subject><ispartof>Fatigue &amp; fracture of engineering materials &amp; structures, 1994-04, Vol.17 (4), p.497-500</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4147-495930afbbedd134bd79a1719b060a24d870880207033ac333b1cc647da35d3e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1460-2695.1994.tb00248.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1460-2695.1994.tb00248.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4100576$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rider, R. J.</creatorcontrib><creatorcontrib>Harvey, S. J.</creatorcontrib><creatorcontrib>Charles, I. D.</creatorcontrib><title>RATCHETTING IN PRESSURISED PIPES</title><title>Fatigue &amp; fracture of engineering materials &amp; structures</title><description>— The plastic deformation of thin‐walled cylinders has been experimentally examined for the loading conditions of ±1% axial strain with hoop stresses of approximately 0, 1/4, 1/2 and 3/4 of the initial uniaxial yield stress. Two materials similar to those used in the pipework of PWR nuclear plant in the U.K. have been tested, namely 304S11 stainless steel and En6 low‐carbon steel. The results of the tests were to be compared with the allowable stresses and deformations specified in the ASME Boiler and Pressure Vessel Code, Section III. The code specifies that a prescribed combination of primary stresses must not exceed 1.5Sm, where Sm is a stress value defined for each material. The results indicate that the limit of 1.5Sm is excessively low for both materials and that in particular, the stainless steel could tolerate 5Sm. Although the En6 steel is more prone to ratchetting than the stainless steel, the results suggest that it too could tolerate a higher primary stress than the code allows. Both materials are shown to satisfy the proposed ASME ratchet strain limit of 5% hoop strain after 10 cycles of ±1% axial strain range, for any value of internal pressure.</description><subject>Applied sciences</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Deformation and plasticity (including yield, ductility, and superplasticity)</subject><subject>Exact sciences and technology</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>Metals. Metallurgy</subject><subject>Physics</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqVkE9PwkAQxTdGExH9Do0x3lpnu_-6HkwIFmyC2FBQb5ttu02KRbALEb69bUq4O5c5zHu_yXsI3WLwcDMPSw9TDq7PJfOwlNTbpgA-Dbz9GeqdTueoFwjGXcGCz0t0Ze0SAHNKSA85s8F8-BLO59F07ERTJ56FSbKYRUn47MRRHCbX6KLQlTU3x91Hi1HYWNzJ2zgaDiZuRjEVLpVMEtBFmpo8x4SmuZAaCyxT4KB9mgcCggB8EECIzgghKc4yTkWuCcuJIX1033E39fpnZ-xWrUqbmarS32a9s8rnjPoEZCN87IRZvba2NoXa1OVK1weFQbWlqKVqk6s2uWpLUcdS1L4x3x2_aJvpqqj1d1baE4FiACZ4I3vqZL9lZQ7_eKBGo5BK0QDcDlDardmfALr-UlwQwdTHdKwYHiYxf39VmPwB9u6ANQ</recordid><startdate>199404</startdate><enddate>199404</enddate><creator>Rider, R. J.</creator><creator>Harvey, S. J.</creator><creator>Charles, I. D.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Science</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>199404</creationdate><title>RATCHETTING IN PRESSURISED PIPES</title><author>Rider, R. J. ; Harvey, S. J. ; Charles, I. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4147-495930afbbedd134bd79a1719b060a24d870880207033ac333b1cc647da35d3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Deformation and plasticity (including yield, ductility, and superplasticity)</topic><topic>Exact sciences and technology</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>Metals. Metallurgy</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rider, R. J.</creatorcontrib><creatorcontrib>Harvey, S. J.</creatorcontrib><creatorcontrib>Charles, I. D.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rider, R. J.</au><au>Harvey, S. J.</au><au>Charles, I. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RATCHETTING IN PRESSURISED PIPES</atitle><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle><date>1994-04</date><risdate>1994</risdate><volume>17</volume><issue>4</issue><spage>497</spage><epage>500</epage><pages>497-500</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><coden>FFESEY</coden><abstract>— The plastic deformation of thin‐walled cylinders has been experimentally examined for the loading conditions of ±1% axial strain with hoop stresses of approximately 0, 1/4, 1/2 and 3/4 of the initial uniaxial yield stress. Two materials similar to those used in the pipework of PWR nuclear plant in the U.K. have been tested, namely 304S11 stainless steel and En6 low‐carbon steel. The results of the tests were to be compared with the allowable stresses and deformations specified in the ASME Boiler and Pressure Vessel Code, Section III. The code specifies that a prescribed combination of primary stresses must not exceed 1.5Sm, where Sm is a stress value defined for each material. The results indicate that the limit of 1.5Sm is excessively low for both materials and that in particular, the stainless steel could tolerate 5Sm. Although the En6 steel is more prone to ratchetting than the stainless steel, the results suggest that it too could tolerate a higher primary stress than the code allows. Both materials are shown to satisfy the proposed ASME ratchet strain limit of 5% hoop strain after 10 cycles of ±1% axial strain range, for any value of internal pressure.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1460-2695.1994.tb00248.x</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 8756-758X
ispartof Fatigue & fracture of engineering materials & structures, 1994-04, Vol.17 (4), p.497-500
issn 8756-758X
1460-2695
language eng
recordid cdi_proquest_miscellaneous_26542309
source Wiley Online Library All Journals
subjects Applied sciences
Condensed matter: structure, mechanical and thermal properties
Deformation and plasticity (including yield, ductility, and superplasticity)
Exact sciences and technology
Mechanical and acoustical properties of condensed matter
Mechanical properties of solids
Metals. Metallurgy
Physics
title RATCHETTING IN PRESSURISED PIPES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A14%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RATCHETTING%20IN%20PRESSURISED%20PIPES&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Rider,%20R.%20J.&rft.date=1994-04&rft.volume=17&rft.issue=4&rft.spage=497&rft.epage=500&rft.pages=497-500&rft.issn=8756-758X&rft.eissn=1460-2695&rft.coden=FFESEY&rft_id=info:doi/10.1111/j.1460-2695.1994.tb00248.x&rft_dat=%3Cproquest_cross%3E26542309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26542309&rft_id=info:pmid/&rfr_iscdi=true