Feature Selection by Hybrid Brain Storm Optimization Algorithm for COVID-19 Classification

A large number of features lead to very high-dimensional data. The feature selection method reduces the dimension of data, increases the performance of prediction, and reduces the computation time. Feature selection is the process of selecting the optimal set of input features from a given data set...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational biology 2022-06, Vol.29 (6), p.515-529
Hauptverfasser: Bezdan, Timea, Zivkovic, Miodrag, Bacanin, Nebojsa, Chhabra, Amit, Suresh, Muthusamy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 529
container_issue 6
container_start_page 515
container_title Journal of computational biology
container_volume 29
creator Bezdan, Timea
Zivkovic, Miodrag
Bacanin, Nebojsa
Chhabra, Amit
Suresh, Muthusamy
description A large number of features lead to very high-dimensional data. The feature selection method reduces the dimension of data, increases the performance of prediction, and reduces the computation time. Feature selection is the process of selecting the optimal set of input features from a given data set in order to reduce the noise in data and keep the relevant features. The optimal feature subset contains all useful and relevant features and excludes any irrelevant feature that allows machine learning models to understand better and differentiate efficiently the patterns in data sets. In this article, we propose a binary hybrid metaheuristic-based algorithm for selecting the optimal feature subset. Concretely, the brain storm optimization algorithm is hybridized by the firefly algorithm and adopted as a wrapper method for feature selection problems on classification data sets. The proposed algorithm is evaluated on 21 data sets and compared with 11 metaheuristic algorithms. In addition, the proposed method is adopted for the coronavirus disease data set. The obtained experimental results substantiate the robustness of the proposed hybrid algorithm. It efficiently reduces and selects the feature subset and at the same time results in higher classification accuracy than other methods in the literature.
doi_str_mv 10.1089/cmb.2021.0256
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2653269693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2653269693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-f6b024eca6fe41bebba4361157be11488af14c2942aa7ef8cebcf17d2ced09e23</originalsourceid><addsrcrecordid>eNpN0DtPwzAUhmELgWgpjKzII0uKb3GSsRRKK1XqUGBgsWznGIySptjJUH49vYGYzhkefcOL0DUlQ0ry4s7WZsgIo0PCUnmC-jRNsySXUp7--3voIsZPQiiXJDtHPZ4KIalI--htArrtAuAlVGBb36yw2eDpxgRf4vug_Qov2ybUeLFufe2_9Z6Mqvcm-Pajxq4JeLx4nT0ktMDjSsfonbd7dYnOnK4iXB3vAL1MHp_H02S-eJqNR_PEMsbbxElDmACrpQNBDRijBZeUppkBSkWea0eFZYVgWmfgcgvGOpqVzEJJCmB8gG4Pu-vQfHUQW1X7aKGq9AqaLiomU85kIQu-pcmB2tDEGMCpdfC1DhtFidrlVNucapdT7XJu_c1xujM1lH_6tx__AcK7cR0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653269693</pqid></control><display><type>article</type><title>Feature Selection by Hybrid Brain Storm Optimization Algorithm for COVID-19 Classification</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Bezdan, Timea ; Zivkovic, Miodrag ; Bacanin, Nebojsa ; Chhabra, Amit ; Suresh, Muthusamy</creator><creatorcontrib>Bezdan, Timea ; Zivkovic, Miodrag ; Bacanin, Nebojsa ; Chhabra, Amit ; Suresh, Muthusamy</creatorcontrib><description>A large number of features lead to very high-dimensional data. The feature selection method reduces the dimension of data, increases the performance of prediction, and reduces the computation time. Feature selection is the process of selecting the optimal set of input features from a given data set in order to reduce the noise in data and keep the relevant features. The optimal feature subset contains all useful and relevant features and excludes any irrelevant feature that allows machine learning models to understand better and differentiate efficiently the patterns in data sets. In this article, we propose a binary hybrid metaheuristic-based algorithm for selecting the optimal feature subset. Concretely, the brain storm optimization algorithm is hybridized by the firefly algorithm and adopted as a wrapper method for feature selection problems on classification data sets. The proposed algorithm is evaluated on 21 data sets and compared with 11 metaheuristic algorithms. In addition, the proposed method is adopted for the coronavirus disease data set. The obtained experimental results substantiate the robustness of the proposed hybrid algorithm. It efficiently reduces and selects the feature subset and at the same time results in higher classification accuracy than other methods in the literature.</description><identifier>ISSN: 1557-8666</identifier><identifier>EISSN: 1557-8666</identifier><identifier>DOI: 10.1089/cmb.2021.0256</identifier><identifier>PMID: 35446145</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Brain ; COVID-19 ; Humans ; Machine Learning</subject><ispartof>Journal of computational biology, 2022-06, Vol.29 (6), p.515-529</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-f6b024eca6fe41bebba4361157be11488af14c2942aa7ef8cebcf17d2ced09e23</citedby><cites>FETCH-LOGICAL-c223t-f6b024eca6fe41bebba4361157be11488af14c2942aa7ef8cebcf17d2ced09e23</cites><orcidid>0000-0003-2056-6231 ; 0000-0001-6938-6974 ; 0000-0002-2062-924X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35446145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bezdan, Timea</creatorcontrib><creatorcontrib>Zivkovic, Miodrag</creatorcontrib><creatorcontrib>Bacanin, Nebojsa</creatorcontrib><creatorcontrib>Chhabra, Amit</creatorcontrib><creatorcontrib>Suresh, Muthusamy</creatorcontrib><title>Feature Selection by Hybrid Brain Storm Optimization Algorithm for COVID-19 Classification</title><title>Journal of computational biology</title><addtitle>J Comput Biol</addtitle><description>A large number of features lead to very high-dimensional data. The feature selection method reduces the dimension of data, increases the performance of prediction, and reduces the computation time. Feature selection is the process of selecting the optimal set of input features from a given data set in order to reduce the noise in data and keep the relevant features. The optimal feature subset contains all useful and relevant features and excludes any irrelevant feature that allows machine learning models to understand better and differentiate efficiently the patterns in data sets. In this article, we propose a binary hybrid metaheuristic-based algorithm for selecting the optimal feature subset. Concretely, the brain storm optimization algorithm is hybridized by the firefly algorithm and adopted as a wrapper method for feature selection problems on classification data sets. The proposed algorithm is evaluated on 21 data sets and compared with 11 metaheuristic algorithms. In addition, the proposed method is adopted for the coronavirus disease data set. The obtained experimental results substantiate the robustness of the proposed hybrid algorithm. It efficiently reduces and selects the feature subset and at the same time results in higher classification accuracy than other methods in the literature.</description><subject>Algorithms</subject><subject>Brain</subject><subject>COVID-19</subject><subject>Humans</subject><subject>Machine Learning</subject><issn>1557-8666</issn><issn>1557-8666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpN0DtPwzAUhmELgWgpjKzII0uKb3GSsRRKK1XqUGBgsWznGIySptjJUH49vYGYzhkefcOL0DUlQ0ry4s7WZsgIo0PCUnmC-jRNsySXUp7--3voIsZPQiiXJDtHPZ4KIalI--htArrtAuAlVGBb36yw2eDpxgRf4vug_Qov2ybUeLFufe2_9Z6Mqvcm-Pajxq4JeLx4nT0ktMDjSsfonbd7dYnOnK4iXB3vAL1MHp_H02S-eJqNR_PEMsbbxElDmACrpQNBDRijBZeUppkBSkWea0eFZYVgWmfgcgvGOpqVzEJJCmB8gG4Pu-vQfHUQW1X7aKGq9AqaLiomU85kIQu-pcmB2tDEGMCpdfC1DhtFidrlVNucapdT7XJu_c1xujM1lH_6tx__AcK7cR0</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Bezdan, Timea</creator><creator>Zivkovic, Miodrag</creator><creator>Bacanin, Nebojsa</creator><creator>Chhabra, Amit</creator><creator>Suresh, Muthusamy</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2056-6231</orcidid><orcidid>https://orcid.org/0000-0001-6938-6974</orcidid><orcidid>https://orcid.org/0000-0002-2062-924X</orcidid></search><sort><creationdate>202206</creationdate><title>Feature Selection by Hybrid Brain Storm Optimization Algorithm for COVID-19 Classification</title><author>Bezdan, Timea ; Zivkovic, Miodrag ; Bacanin, Nebojsa ; Chhabra, Amit ; Suresh, Muthusamy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-f6b024eca6fe41bebba4361157be11488af14c2942aa7ef8cebcf17d2ced09e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Brain</topic><topic>COVID-19</topic><topic>Humans</topic><topic>Machine Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bezdan, Timea</creatorcontrib><creatorcontrib>Zivkovic, Miodrag</creatorcontrib><creatorcontrib>Bacanin, Nebojsa</creatorcontrib><creatorcontrib>Chhabra, Amit</creatorcontrib><creatorcontrib>Suresh, Muthusamy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bezdan, Timea</au><au>Zivkovic, Miodrag</au><au>Bacanin, Nebojsa</au><au>Chhabra, Amit</au><au>Suresh, Muthusamy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature Selection by Hybrid Brain Storm Optimization Algorithm for COVID-19 Classification</atitle><jtitle>Journal of computational biology</jtitle><addtitle>J Comput Biol</addtitle><date>2022-06</date><risdate>2022</risdate><volume>29</volume><issue>6</issue><spage>515</spage><epage>529</epage><pages>515-529</pages><issn>1557-8666</issn><eissn>1557-8666</eissn><abstract>A large number of features lead to very high-dimensional data. The feature selection method reduces the dimension of data, increases the performance of prediction, and reduces the computation time. Feature selection is the process of selecting the optimal set of input features from a given data set in order to reduce the noise in data and keep the relevant features. The optimal feature subset contains all useful and relevant features and excludes any irrelevant feature that allows machine learning models to understand better and differentiate efficiently the patterns in data sets. In this article, we propose a binary hybrid metaheuristic-based algorithm for selecting the optimal feature subset. Concretely, the brain storm optimization algorithm is hybridized by the firefly algorithm and adopted as a wrapper method for feature selection problems on classification data sets. The proposed algorithm is evaluated on 21 data sets and compared with 11 metaheuristic algorithms. In addition, the proposed method is adopted for the coronavirus disease data set. The obtained experimental results substantiate the robustness of the proposed hybrid algorithm. It efficiently reduces and selects the feature subset and at the same time results in higher classification accuracy than other methods in the literature.</abstract><cop>United States</cop><pmid>35446145</pmid><doi>10.1089/cmb.2021.0256</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2056-6231</orcidid><orcidid>https://orcid.org/0000-0001-6938-6974</orcidid><orcidid>https://orcid.org/0000-0002-2062-924X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1557-8666
ispartof Journal of computational biology, 2022-06, Vol.29 (6), p.515-529
issn 1557-8666
1557-8666
language eng
recordid cdi_proquest_miscellaneous_2653269693
source MEDLINE; Alma/SFX Local Collection
subjects Algorithms
Brain
COVID-19
Humans
Machine Learning
title Feature Selection by Hybrid Brain Storm Optimization Algorithm for COVID-19 Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A09%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20Selection%20by%20Hybrid%20Brain%20Storm%20Optimization%20Algorithm%20for%20COVID-19%20Classification&rft.jtitle=Journal%20of%20computational%20biology&rft.au=Bezdan,%20Timea&rft.date=2022-06&rft.volume=29&rft.issue=6&rft.spage=515&rft.epage=529&rft.pages=515-529&rft.issn=1557-8666&rft.eissn=1557-8666&rft_id=info:doi/10.1089/cmb.2021.0256&rft_dat=%3Cproquest_cross%3E2653269693%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2653269693&rft_id=info:pmid/35446145&rfr_iscdi=true