SAM: Self-Supervised Learning of Pixel-Wise Anatomical Embeddings in Radiological Images
Radiological images such as computed tomography (CT) and X-rays render anatomy with intrinsic structures. Being able to reliably locate the same anatomical structure across varying images is a fundamental task in medical image analysis. In principle it is possible to use landmark detection or semant...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2022-10, Vol.41 (10), p.2658-2669 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2669 |
---|---|
container_issue | 10 |
container_start_page | 2658 |
container_title | IEEE transactions on medical imaging |
container_volume | 41 |
creator | Yan, Ke Cai, Jinzheng Jin, Dakai Miao, Shun Guo, Dazhou Harrison, Adam P. Tang, Youbao Xiao, Jing Lu, Jingjing Lu, Le |
description | Radiological images such as computed tomography (CT) and X-rays render anatomy with intrinsic structures. Being able to reliably locate the same anatomical structure across varying images is a fundamental task in medical image analysis. In principle it is possible to use landmark detection or semantic segmentation for this task, but to work well these require large numbers of labeled data for each anatomical structure and sub-structure of interest. A more universal approach would learn the intrinsic structure from unlabeled images. We introduce such an approach, called Self-supervised Anatomical eMbedding (SAM). SAM generates semantic embeddings for each image pixel that describes its anatomical location or body part. To produce such embeddings, we propose a pixel-level contrastive learning framework. A coarse-to-fine strategy ensures both global and local anatomical information are encoded. Negative sample selection strategies are designed to enhance the embedding's discriminability. Using SAM, one can label any point of interest on a template image and then locate the same body part in other images by simple nearest neighbor searching. We demonstrate the effectiveness of SAM in multiple tasks with 2D and 3D image modalities. On a chest CT dataset with 19 landmarks, SAM outperforms widely-used registration algorithms while only taking 0.23 seconds for inference. On two X-ray datasets, SAM, with only one labeled template image, surpasses supervised methods trained on 50 labeled images. We also apply SAM on whole-body follow-up lesion matching in CT and obtain an accuracy of 91%. SAM can also be applied for improving image registration and initializing CNN weights. |
doi_str_mv | 10.1109/TMI.2022.3169003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2653268784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9760421</ieee_id><sourcerecordid>2719555186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-6000338b847d3b28ce11cc7d62b74116903876f4ffb2f1a3e4b4c1a183ad39173</originalsourceid><addsrcrecordid>eNpdkMtLI0EQhxtRND7ugiADXrxM7Or3eAvB1UBkxbist6Znpia0zCNOZ5b1v7eziR72VFD1_Yqqj5BzoGMAmt28PM7GjDI25qAySvkeGYGUJmVSvO6TEWXapJQqdkSOQ3ijFISk2SE54lIIZowakdfF5PE2WWBdpYthhf0fH7BM5uj61rfLpKuSJ_8X6_R37CeT1q27xheuTu6aHMsyIiHxbfLsSt_V3fLfaNa4JYZTclC5OuDZrp6QXz_uXqYP6fzn_Ww6macFF3qdKhrP5iY3Qpc8Z6ZAgKLQpWK5FrD5ihutKlFVOavAcRS5KMCB4a7kGWh-Qq63e1d99z5gWNvGhwLr2rXYDcEyJTlTRhsR0av_0Ldu6Nt4nWUaMiklGBUpuqWKvguhx8quet-4_sMCtRvrNlq3G-t2Zz1GLneLh7zB8jvwpTkCF1vAI-L3ONOKCgb8E5yTg5Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719555186</pqid></control><display><type>article</type><title>SAM: Self-Supervised Learning of Pixel-Wise Anatomical Embeddings in Radiological Images</title><source>IEEE Electronic Library (IEL)</source><creator>Yan, Ke ; Cai, Jinzheng ; Jin, Dakai ; Miao, Shun ; Guo, Dazhou ; Harrison, Adam P. ; Tang, Youbao ; Xiao, Jing ; Lu, Jingjing ; Lu, Le</creator><creatorcontrib>Yan, Ke ; Cai, Jinzheng ; Jin, Dakai ; Miao, Shun ; Guo, Dazhou ; Harrison, Adam P. ; Tang, Youbao ; Xiao, Jing ; Lu, Jingjing ; Lu, Le</creatorcontrib><description>Radiological images such as computed tomography (CT) and X-rays render anatomy with intrinsic structures. Being able to reliably locate the same anatomical structure across varying images is a fundamental task in medical image analysis. In principle it is possible to use landmark detection or semantic segmentation for this task, but to work well these require large numbers of labeled data for each anatomical structure and sub-structure of interest. A more universal approach would learn the intrinsic structure from unlabeled images. We introduce such an approach, called Self-supervised Anatomical eMbedding (SAM). SAM generates semantic embeddings for each image pixel that describes its anatomical location or body part. To produce such embeddings, we propose a pixel-level contrastive learning framework. A coarse-to-fine strategy ensures both global and local anatomical information are encoded. Negative sample selection strategies are designed to enhance the embedding's discriminability. Using SAM, one can label any point of interest on a template image and then locate the same body part in other images by simple nearest neighbor searching. We demonstrate the effectiveness of SAM in multiple tasks with 2D and 3D image modalities. On a chest CT dataset with 19 landmarks, SAM outperforms widely-used registration algorithms while only taking 0.23 seconds for inference. On two X-ray datasets, SAM, with only one labeled template image, surpasses supervised methods trained on 50 labeled images. We also apply SAM on whole-body follow-up lesion matching in CT and obtain an accuracy of 91%. SAM can also be applied for improving image registration and initializing CNN weights.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2022.3169003</identifier><identifier>PMID: 35442886</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Body parts ; Computed tomography ; Contrastive learning ; Datasets ; Embedding ; follow-up lesion matching ; Image analysis ; Image processing ; Image registration ; Image segmentation ; landmark detection ; Lesions ; Medical imaging ; pixel-wise embedding ; Pixels ; Prediction algorithms ; Self-supervised learning ; Semantic segmentation ; Semantics ; Supervised learning ; Task analysis ; Three-dimensional displays ; Training ; X-rays</subject><ispartof>IEEE transactions on medical imaging, 2022-10, Vol.41 (10), p.2658-2669</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-6000338b847d3b28ce11cc7d62b74116903876f4ffb2f1a3e4b4c1a183ad39173</citedby><cites>FETCH-LOGICAL-c347t-6000338b847d3b28ce11cc7d62b74116903876f4ffb2f1a3e4b4c1a183ad39173</cites><orcidid>0000-0001-8719-3375 ; 0000-0002-7614-4524 ; 0000-0003-3315-1772 ; 0000-0002-4688-7087 ; 0000-0002-0034-9013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9760421$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9760421$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35442886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Ke</creatorcontrib><creatorcontrib>Cai, Jinzheng</creatorcontrib><creatorcontrib>Jin, Dakai</creatorcontrib><creatorcontrib>Miao, Shun</creatorcontrib><creatorcontrib>Guo, Dazhou</creatorcontrib><creatorcontrib>Harrison, Adam P.</creatorcontrib><creatorcontrib>Tang, Youbao</creatorcontrib><creatorcontrib>Xiao, Jing</creatorcontrib><creatorcontrib>Lu, Jingjing</creatorcontrib><creatorcontrib>Lu, Le</creatorcontrib><title>SAM: Self-Supervised Learning of Pixel-Wise Anatomical Embeddings in Radiological Images</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Radiological images such as computed tomography (CT) and X-rays render anatomy with intrinsic structures. Being able to reliably locate the same anatomical structure across varying images is a fundamental task in medical image analysis. In principle it is possible to use landmark detection or semantic segmentation for this task, but to work well these require large numbers of labeled data for each anatomical structure and sub-structure of interest. A more universal approach would learn the intrinsic structure from unlabeled images. We introduce such an approach, called Self-supervised Anatomical eMbedding (SAM). SAM generates semantic embeddings for each image pixel that describes its anatomical location or body part. To produce such embeddings, we propose a pixel-level contrastive learning framework. A coarse-to-fine strategy ensures both global and local anatomical information are encoded. Negative sample selection strategies are designed to enhance the embedding's discriminability. Using SAM, one can label any point of interest on a template image and then locate the same body part in other images by simple nearest neighbor searching. We demonstrate the effectiveness of SAM in multiple tasks with 2D and 3D image modalities. On a chest CT dataset with 19 landmarks, SAM outperforms widely-used registration algorithms while only taking 0.23 seconds for inference. On two X-ray datasets, SAM, with only one labeled template image, surpasses supervised methods trained on 50 labeled images. We also apply SAM on whole-body follow-up lesion matching in CT and obtain an accuracy of 91%. SAM can also be applied for improving image registration and initializing CNN weights.</description><subject>Algorithms</subject><subject>Body parts</subject><subject>Computed tomography</subject><subject>Contrastive learning</subject><subject>Datasets</subject><subject>Embedding</subject><subject>follow-up lesion matching</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image registration</subject><subject>Image segmentation</subject><subject>landmark detection</subject><subject>Lesions</subject><subject>Medical imaging</subject><subject>pixel-wise embedding</subject><subject>Pixels</subject><subject>Prediction algorithms</subject><subject>Self-supervised learning</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Supervised learning</subject><subject>Task analysis</subject><subject>Three-dimensional displays</subject><subject>Training</subject><subject>X-rays</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtLI0EQhxtRND7ugiADXrxM7Or3eAvB1UBkxbist6Znpia0zCNOZ5b1v7eziR72VFD1_Yqqj5BzoGMAmt28PM7GjDI25qAySvkeGYGUJmVSvO6TEWXapJQqdkSOQ3ijFISk2SE54lIIZowakdfF5PE2WWBdpYthhf0fH7BM5uj61rfLpKuSJ_8X6_R37CeT1q27xheuTu6aHMsyIiHxbfLsSt_V3fLfaNa4JYZTclC5OuDZrp6QXz_uXqYP6fzn_Ww6macFF3qdKhrP5iY3Qpc8Z6ZAgKLQpWK5FrD5ihutKlFVOavAcRS5KMCB4a7kGWh-Qq63e1d99z5gWNvGhwLr2rXYDcEyJTlTRhsR0av_0Ldu6Nt4nWUaMiklGBUpuqWKvguhx8quet-4_sMCtRvrNlq3G-t2Zz1GLneLh7zB8jvwpTkCF1vAI-L3ONOKCgb8E5yTg5Y</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Yan, Ke</creator><creator>Cai, Jinzheng</creator><creator>Jin, Dakai</creator><creator>Miao, Shun</creator><creator>Guo, Dazhou</creator><creator>Harrison, Adam P.</creator><creator>Tang, Youbao</creator><creator>Xiao, Jing</creator><creator>Lu, Jingjing</creator><creator>Lu, Le</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8719-3375</orcidid><orcidid>https://orcid.org/0000-0002-7614-4524</orcidid><orcidid>https://orcid.org/0000-0003-3315-1772</orcidid><orcidid>https://orcid.org/0000-0002-4688-7087</orcidid><orcidid>https://orcid.org/0000-0002-0034-9013</orcidid></search><sort><creationdate>20221001</creationdate><title>SAM: Self-Supervised Learning of Pixel-Wise Anatomical Embeddings in Radiological Images</title><author>Yan, Ke ; Cai, Jinzheng ; Jin, Dakai ; Miao, Shun ; Guo, Dazhou ; Harrison, Adam P. ; Tang, Youbao ; Xiao, Jing ; Lu, Jingjing ; Lu, Le</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-6000338b847d3b28ce11cc7d62b74116903876f4ffb2f1a3e4b4c1a183ad39173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Body parts</topic><topic>Computed tomography</topic><topic>Contrastive learning</topic><topic>Datasets</topic><topic>Embedding</topic><topic>follow-up lesion matching</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image registration</topic><topic>Image segmentation</topic><topic>landmark detection</topic><topic>Lesions</topic><topic>Medical imaging</topic><topic>pixel-wise embedding</topic><topic>Pixels</topic><topic>Prediction algorithms</topic><topic>Self-supervised learning</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Supervised learning</topic><topic>Task analysis</topic><topic>Three-dimensional displays</topic><topic>Training</topic><topic>X-rays</topic><toplevel>online_resources</toplevel><creatorcontrib>Yan, Ke</creatorcontrib><creatorcontrib>Cai, Jinzheng</creatorcontrib><creatorcontrib>Jin, Dakai</creatorcontrib><creatorcontrib>Miao, Shun</creatorcontrib><creatorcontrib>Guo, Dazhou</creatorcontrib><creatorcontrib>Harrison, Adam P.</creatorcontrib><creatorcontrib>Tang, Youbao</creatorcontrib><creatorcontrib>Xiao, Jing</creatorcontrib><creatorcontrib>Lu, Jingjing</creatorcontrib><creatorcontrib>Lu, Le</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yan, Ke</au><au>Cai, Jinzheng</au><au>Jin, Dakai</au><au>Miao, Shun</au><au>Guo, Dazhou</au><au>Harrison, Adam P.</au><au>Tang, Youbao</au><au>Xiao, Jing</au><au>Lu, Jingjing</au><au>Lu, Le</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SAM: Self-Supervised Learning of Pixel-Wise Anatomical Embeddings in Radiological Images</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>41</volume><issue>10</issue><spage>2658</spage><epage>2669</epage><pages>2658-2669</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Radiological images such as computed tomography (CT) and X-rays render anatomy with intrinsic structures. Being able to reliably locate the same anatomical structure across varying images is a fundamental task in medical image analysis. In principle it is possible to use landmark detection or semantic segmentation for this task, but to work well these require large numbers of labeled data for each anatomical structure and sub-structure of interest. A more universal approach would learn the intrinsic structure from unlabeled images. We introduce such an approach, called Self-supervised Anatomical eMbedding (SAM). SAM generates semantic embeddings for each image pixel that describes its anatomical location or body part. To produce such embeddings, we propose a pixel-level contrastive learning framework. A coarse-to-fine strategy ensures both global and local anatomical information are encoded. Negative sample selection strategies are designed to enhance the embedding's discriminability. Using SAM, one can label any point of interest on a template image and then locate the same body part in other images by simple nearest neighbor searching. We demonstrate the effectiveness of SAM in multiple tasks with 2D and 3D image modalities. On a chest CT dataset with 19 landmarks, SAM outperforms widely-used registration algorithms while only taking 0.23 seconds for inference. On two X-ray datasets, SAM, with only one labeled template image, surpasses supervised methods trained on 50 labeled images. We also apply SAM on whole-body follow-up lesion matching in CT and obtain an accuracy of 91%. SAM can also be applied for improving image registration and initializing CNN weights.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35442886</pmid><doi>10.1109/TMI.2022.3169003</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8719-3375</orcidid><orcidid>https://orcid.org/0000-0002-7614-4524</orcidid><orcidid>https://orcid.org/0000-0003-3315-1772</orcidid><orcidid>https://orcid.org/0000-0002-4688-7087</orcidid><orcidid>https://orcid.org/0000-0002-0034-9013</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2022-10, Vol.41 (10), p.2658-2669 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_proquest_miscellaneous_2653268784 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Body parts Computed tomography Contrastive learning Datasets Embedding follow-up lesion matching Image analysis Image processing Image registration Image segmentation landmark detection Lesions Medical imaging pixel-wise embedding Pixels Prediction algorithms Self-supervised learning Semantic segmentation Semantics Supervised learning Task analysis Three-dimensional displays Training X-rays |
title | SAM: Self-Supervised Learning of Pixel-Wise Anatomical Embeddings in Radiological Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A54%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SAM:%20Self-Supervised%20Learning%20of%20Pixel-Wise%20Anatomical%20Embeddings%20in%20Radiological%20Images&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Yan,%20Ke&rft.date=2022-10-01&rft.volume=41&rft.issue=10&rft.spage=2658&rft.epage=2669&rft.pages=2658-2669&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2022.3169003&rft_dat=%3Cproquest_RIE%3E2719555186%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2719555186&rft_id=info:pmid/35442886&rft_ieee_id=9760421&rfr_iscdi=true |