A plume origin for hydrous melt at the lithosphere–asthenosphere boundary
Plate tectonics requires a low-viscosity layer beneath the lithosphere–asthenosphere boundary (LAB), yet the origin of this ductile transition remains debated 1 , 2 . Explanations include the weakening effects of increasing temperature 3 , 4 , mineral hydration 5 or partial melt 6 . Electrical resis...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2022-04, Vol.604 (7906), p.491-494 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 494 |
---|---|
container_issue | 7906 |
container_start_page | 491 |
container_title | Nature (London) |
container_volume | 604 |
creator | Blatter, Daniel Naif, Samer Key, Kerry Ray, Anandaroop |
description | Plate tectonics requires a low-viscosity layer beneath the lithosphere–asthenosphere boundary (LAB), yet the origin of this ductile transition remains debated
1
,
2
. Explanations include the weakening effects of increasing temperature
3
,
4
, mineral hydration
5
or partial melt
6
. Electrical resistivity is sensitive to all three effects
7
, including melt volatile content
8
, but previous LAB constraints from magnetotelluric soundings did not simultaneously consider the thermodynamic stability of the inferred amount of melt and the effect of uncertainty in the estimated resistivity
8
–
14
. Here we couple an experimentally constrained parameterization of mantle melting in the presence of volatiles
15
,
16
with Bayesian resistivity inversion
17
and apply this to magnetotelluric data sensitive to a LAB channel beneath the Cocos Plate
9
. Paradoxically, we find that the conductive channel requires either anomalously large melt fractions with moderate volatile contents or moderate melt fractions with anomalously large volatile contents, depending on the assumed mantle temperature. Large melt fractions are unlikely to be mechanically stable and conflict with melt-migration models
18
. As large volatile contents require a highly enriched mantle source inconsistent with mid-ocean-ridge estimates
19
, our results indicate that a mantle plume emplaced volatile-rich melts in the LAB channel. This requires the presence of a previously undetected nearby plume or the influence of the distant Galápagos hotspot. Plumes that feed thin, hydrous melt channels
9
,
14
,
20
may be an unrecognized source of LAB anomalies globally.
By combining experimental constraints on mantle melting with magnetotelluric data, volatile-rich melts emplaced by a mantle plume were shown to be present in the asthenosphere beneath the Cocos Plate. |
doi_str_mv | 10.1038/s41586-022-04483-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2653267542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2654410656</sourcerecordid><originalsourceid>FETCH-LOGICAL-a328t-e88b1e00c37436c7508d960047ed1a6266bfb6d7eb765522d932571754050363</originalsourceid><addsrcrecordid>eNp9kLlOAzEQhi0EIiHwAhTIEg3Nwvh2yijiEkg06a09vNmN9gj2rqJ0vANvyJPgsAEkCirL9jf_zHwInRO4JsD0jedEaBkBpRFwrlm0OUBjwpWMuNTqEI0BqI5AMzlCJ96vAEAQxY_RiAnOOaNyjJ5meF31tcWtK5dlg_PW4WKbubb3uLZVh-MOd4XFVdkVrV8X1tmPt_fYh7dmf8dJ2zdZ7Lan6CiPK2_P9ucELe5uF_OH6Pnl_nE-e45iRnUXWa0TYgFSpjiTqRKgs6kE4MpmJJZUyiRPZKZsoqQQlGZTRoUiSnAQwCSboKshdu3a1976ztSlT21VxY0NYxsqRVgt4DSgl3_QVdu7Jgy3ozgnIMUukA5U6lrvnc3N2pV1WMgQMDvTZjBtgmnzZdpsQtHFPrpPapv9lHyrDQAbAB--mqV1v73_if0EjGyI_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2654410656</pqid></control><display><type>article</type><title>A plume origin for hydrous melt at the lithosphere–asthenosphere boundary</title><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Blatter, Daniel ; Naif, Samer ; Key, Kerry ; Ray, Anandaroop</creator><creatorcontrib>Blatter, Daniel ; Naif, Samer ; Key, Kerry ; Ray, Anandaroop</creatorcontrib><description>Plate tectonics requires a low-viscosity layer beneath the lithosphere–asthenosphere boundary (LAB), yet the origin of this ductile transition remains debated
1
,
2
. Explanations include the weakening effects of increasing temperature
3
,
4
, mineral hydration
5
or partial melt
6
. Electrical resistivity is sensitive to all three effects
7
, including melt volatile content
8
, but previous LAB constraints from magnetotelluric soundings did not simultaneously consider the thermodynamic stability of the inferred amount of melt and the effect of uncertainty in the estimated resistivity
8
–
14
. Here we couple an experimentally constrained parameterization of mantle melting in the presence of volatiles
15
,
16
with Bayesian resistivity inversion
17
and apply this to magnetotelluric data sensitive to a LAB channel beneath the Cocos Plate
9
. Paradoxically, we find that the conductive channel requires either anomalously large melt fractions with moderate volatile contents or moderate melt fractions with anomalously large volatile contents, depending on the assumed mantle temperature. Large melt fractions are unlikely to be mechanically stable and conflict with melt-migration models
18
. As large volatile contents require a highly enriched mantle source inconsistent with mid-ocean-ridge estimates
19
, our results indicate that a mantle plume emplaced volatile-rich melts in the LAB channel. This requires the presence of a previously undetected nearby plume or the influence of the distant Galápagos hotspot. Plumes that feed thin, hydrous melt channels
9
,
14
,
20
may be an unrecognized source of LAB anomalies globally.
By combining experimental constraints on mantle melting with magnetotelluric data, volatile-rich melts emplaced by a mantle plume were shown to be present in the asthenosphere beneath the Cocos Plate.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-022-04483-w</identifier><identifier>PMID: 35444326</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/2151/210 ; 704/2151/2809 ; 704/2151/562 ; Anomalies ; Asthenosphere ; Bayesian analysis ; Boundary layer transition ; Carbon dioxide ; Constraints ; Ductile-brittle transition ; Electrical resistivity ; Hot spots (geology) ; Humanities and Social Sciences ; Hydration ; Lithosphere ; Mantle plumes ; multidisciplinary ; Parameterization ; Plate tectonics ; Plumes ; Science ; Science (multidisciplinary) ; Viscosity</subject><ispartof>Nature (London), 2022-04, Vol.604 (7906), p.491-494</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Apr 21, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a328t-e88b1e00c37436c7508d960047ed1a6266bfb6d7eb765522d932571754050363</citedby><cites>FETCH-LOGICAL-a328t-e88b1e00c37436c7508d960047ed1a6266bfb6d7eb765522d932571754050363</cites><orcidid>0000-0002-6113-6900 ; 0000-0001-8947-3354 ; 0000-0003-3579-5379 ; 0000-0003-1169-6683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35444326$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blatter, Daniel</creatorcontrib><creatorcontrib>Naif, Samer</creatorcontrib><creatorcontrib>Key, Kerry</creatorcontrib><creatorcontrib>Ray, Anandaroop</creatorcontrib><title>A plume origin for hydrous melt at the lithosphere–asthenosphere boundary</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Plate tectonics requires a low-viscosity layer beneath the lithosphere–asthenosphere boundary (LAB), yet the origin of this ductile transition remains debated
1
,
2
. Explanations include the weakening effects of increasing temperature
3
,
4
, mineral hydration
5
or partial melt
6
. Electrical resistivity is sensitive to all three effects
7
, including melt volatile content
8
, but previous LAB constraints from magnetotelluric soundings did not simultaneously consider the thermodynamic stability of the inferred amount of melt and the effect of uncertainty in the estimated resistivity
8
–
14
. Here we couple an experimentally constrained parameterization of mantle melting in the presence of volatiles
15
,
16
with Bayesian resistivity inversion
17
and apply this to magnetotelluric data sensitive to a LAB channel beneath the Cocos Plate
9
. Paradoxically, we find that the conductive channel requires either anomalously large melt fractions with moderate volatile contents or moderate melt fractions with anomalously large volatile contents, depending on the assumed mantle temperature. Large melt fractions are unlikely to be mechanically stable and conflict with melt-migration models
18
. As large volatile contents require a highly enriched mantle source inconsistent with mid-ocean-ridge estimates
19
, our results indicate that a mantle plume emplaced volatile-rich melts in the LAB channel. This requires the presence of a previously undetected nearby plume or the influence of the distant Galápagos hotspot. Plumes that feed thin, hydrous melt channels
9
,
14
,
20
may be an unrecognized source of LAB anomalies globally.
By combining experimental constraints on mantle melting with magnetotelluric data, volatile-rich melts emplaced by a mantle plume were shown to be present in the asthenosphere beneath the Cocos Plate.</description><subject>704/2151/210</subject><subject>704/2151/2809</subject><subject>704/2151/562</subject><subject>Anomalies</subject><subject>Asthenosphere</subject><subject>Bayesian analysis</subject><subject>Boundary layer transition</subject><subject>Carbon dioxide</subject><subject>Constraints</subject><subject>Ductile-brittle transition</subject><subject>Electrical resistivity</subject><subject>Hot spots (geology)</subject><subject>Humanities and Social Sciences</subject><subject>Hydration</subject><subject>Lithosphere</subject><subject>Mantle plumes</subject><subject>multidisciplinary</subject><subject>Parameterization</subject><subject>Plate tectonics</subject><subject>Plumes</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Viscosity</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kLlOAzEQhi0EIiHwAhTIEg3Nwvh2yijiEkg06a09vNmN9gj2rqJ0vANvyJPgsAEkCirL9jf_zHwInRO4JsD0jedEaBkBpRFwrlm0OUBjwpWMuNTqEI0BqI5AMzlCJ96vAEAQxY_RiAnOOaNyjJ5meF31tcWtK5dlg_PW4WKbubb3uLZVh-MOd4XFVdkVrV8X1tmPt_fYh7dmf8dJ2zdZ7Lan6CiPK2_P9ucELe5uF_OH6Pnl_nE-e45iRnUXWa0TYgFSpjiTqRKgs6kE4MpmJJZUyiRPZKZsoqQQlGZTRoUiSnAQwCSboKshdu3a1976ztSlT21VxY0NYxsqRVgt4DSgl3_QVdu7Jgy3ozgnIMUukA5U6lrvnc3N2pV1WMgQMDvTZjBtgmnzZdpsQtHFPrpPapv9lHyrDQAbAB--mqV1v73_if0EjGyI_Q</recordid><startdate>20220421</startdate><enddate>20220421</enddate><creator>Blatter, Daniel</creator><creator>Naif, Samer</creator><creator>Key, Kerry</creator><creator>Ray, Anandaroop</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6113-6900</orcidid><orcidid>https://orcid.org/0000-0001-8947-3354</orcidid><orcidid>https://orcid.org/0000-0003-3579-5379</orcidid><orcidid>https://orcid.org/0000-0003-1169-6683</orcidid></search><sort><creationdate>20220421</creationdate><title>A plume origin for hydrous melt at the lithosphere–asthenosphere boundary</title><author>Blatter, Daniel ; Naif, Samer ; Key, Kerry ; Ray, Anandaroop</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a328t-e88b1e00c37436c7508d960047ed1a6266bfb6d7eb765522d932571754050363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>704/2151/210</topic><topic>704/2151/2809</topic><topic>704/2151/562</topic><topic>Anomalies</topic><topic>Asthenosphere</topic><topic>Bayesian analysis</topic><topic>Boundary layer transition</topic><topic>Carbon dioxide</topic><topic>Constraints</topic><topic>Ductile-brittle transition</topic><topic>Electrical resistivity</topic><topic>Hot spots (geology)</topic><topic>Humanities and Social Sciences</topic><topic>Hydration</topic><topic>Lithosphere</topic><topic>Mantle plumes</topic><topic>multidisciplinary</topic><topic>Parameterization</topic><topic>Plate tectonics</topic><topic>Plumes</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blatter, Daniel</creatorcontrib><creatorcontrib>Naif, Samer</creatorcontrib><creatorcontrib>Key, Kerry</creatorcontrib><creatorcontrib>Ray, Anandaroop</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blatter, Daniel</au><au>Naif, Samer</au><au>Key, Kerry</au><au>Ray, Anandaroop</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A plume origin for hydrous melt at the lithosphere–asthenosphere boundary</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2022-04-21</date><risdate>2022</risdate><volume>604</volume><issue>7906</issue><spage>491</spage><epage>494</epage><pages>491-494</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Plate tectonics requires a low-viscosity layer beneath the lithosphere–asthenosphere boundary (LAB), yet the origin of this ductile transition remains debated
1
,
2
. Explanations include the weakening effects of increasing temperature
3
,
4
, mineral hydration
5
or partial melt
6
. Electrical resistivity is sensitive to all three effects
7
, including melt volatile content
8
, but previous LAB constraints from magnetotelluric soundings did not simultaneously consider the thermodynamic stability of the inferred amount of melt and the effect of uncertainty in the estimated resistivity
8
–
14
. Here we couple an experimentally constrained parameterization of mantle melting in the presence of volatiles
15
,
16
with Bayesian resistivity inversion
17
and apply this to magnetotelluric data sensitive to a LAB channel beneath the Cocos Plate
9
. Paradoxically, we find that the conductive channel requires either anomalously large melt fractions with moderate volatile contents or moderate melt fractions with anomalously large volatile contents, depending on the assumed mantle temperature. Large melt fractions are unlikely to be mechanically stable and conflict with melt-migration models
18
. As large volatile contents require a highly enriched mantle source inconsistent with mid-ocean-ridge estimates
19
, our results indicate that a mantle plume emplaced volatile-rich melts in the LAB channel. This requires the presence of a previously undetected nearby plume or the influence of the distant Galápagos hotspot. Plumes that feed thin, hydrous melt channels
9
,
14
,
20
may be an unrecognized source of LAB anomalies globally.
By combining experimental constraints on mantle melting with magnetotelluric data, volatile-rich melts emplaced by a mantle plume were shown to be present in the asthenosphere beneath the Cocos Plate.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35444326</pmid><doi>10.1038/s41586-022-04483-w</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-6113-6900</orcidid><orcidid>https://orcid.org/0000-0001-8947-3354</orcidid><orcidid>https://orcid.org/0000-0003-3579-5379</orcidid><orcidid>https://orcid.org/0000-0003-1169-6683</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2022-04, Vol.604 (7906), p.491-494 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2653267542 |
source | Nature Journals Online; Alma/SFX Local Collection |
subjects | 704/2151/210 704/2151/2809 704/2151/562 Anomalies Asthenosphere Bayesian analysis Boundary layer transition Carbon dioxide Constraints Ductile-brittle transition Electrical resistivity Hot spots (geology) Humanities and Social Sciences Hydration Lithosphere Mantle plumes multidisciplinary Parameterization Plate tectonics Plumes Science Science (multidisciplinary) Viscosity |
title | A plume origin for hydrous melt at the lithosphere–asthenosphere boundary |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T07%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20plume%20origin%20for%20hydrous%20melt%20at%20the%20lithosphere%E2%80%93asthenosphere%20boundary&rft.jtitle=Nature%20(London)&rft.au=Blatter,%20Daniel&rft.date=2022-04-21&rft.volume=604&rft.issue=7906&rft.spage=491&rft.epage=494&rft.pages=491-494&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-022-04483-w&rft_dat=%3Cproquest_cross%3E2654410656%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2654410656&rft_id=info:pmid/35444326&rfr_iscdi=true |