In Situ Evolution of Secondary Metallic Phases in Off-Stoichiometric ZrNiSn for Enhanced Thermoelectric Performance

The full-Heusler (FH) inclusions in the half-Heusler (HH) matrix is a well-studied approach to reduce the lattice thermal conductivity of ZrNiSn HH alloy. However, excess Ni in ZrNiSn may lead to the in situ formation of FH and/or HH alloys with interstitial Ni defects. The excess Ni develops interm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-05, Vol.14 (17), p.19579-19593
Hauptverfasser: Johari, Kishor Kumar, Sharma, Durgesh Kumar, Verma, Ajay Kumar, Bhardwaj, Ruchi, Chauhan, Nagendra S, Kumar, Sudhir, Singh, Manvendra Narayan, Bathula, Sivaiah, Gahtori, Bhasker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19593
container_issue 17
container_start_page 19579
container_title ACS applied materials & interfaces
container_volume 14
creator Johari, Kishor Kumar
Sharma, Durgesh Kumar
Verma, Ajay Kumar
Bhardwaj, Ruchi
Chauhan, Nagendra S
Kumar, Sudhir
Singh, Manvendra Narayan
Bathula, Sivaiah
Gahtori, Bhasker
description The full-Heusler (FH) inclusions in the half-Heusler (HH) matrix is a well-studied approach to reduce the lattice thermal conductivity of ZrNiSn HH alloy. However, excess Ni in ZrNiSn may lead to the in situ formation of FH and/or HH alloys with interstitial Ni defects. The excess Ni develops intermediate electronic states in the band gap of ZrNiSn and also generates defects to scatter phonons, thus providing additional control to tailor electronic and phonon transport properties synergistically. In this work, we present the implication of isoelectronic Ge-doping and excess Ni on the thermoelectric transport of ZrNiSn. The synthesized ZrNi1.04Sn1–x Ge x (x = 0–0.04) samples were prepared by arc-melting and spark plasma sintering, and were extensively probed for microstructural analysis. The in situ evolution of minor secondary phases, i.e., FH, Ni–Sn, and Sn–Zr, primarily observed post sintering resulted in simultaneous optimization of the electrical power factor and lattice thermal conductivity. A ZT of ∼1.06 at ∼873 K was attained, which is among the highest for Hf-free ZrNiSn-based HH alloys. Additionally, ab initio calculations based on density functional theory (DFT) were performed to provide comparative insights into experimentally measured properties and understand underlying physics. Further, mechanical properties were experimentally extracted to determine the usability of synthesized alloys for device fabrication.
doi_str_mv 10.1021/acsami.2c03065
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2653266081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2653266081</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-f321d0f6a160f5746ef6eae8217af55204ff3ef112e6cb94d40c8959c524b383</originalsourceid><addsrcrecordid>eNp1kM1LAzEUxIMoVqtXj5KjCFvz3d2jSP2AagvtycuSZl9oym6iya7gf-_W1t48vQfzm4EZhK4oGVHC6J02STduxAzhRMkjdEYLIbKcSXZ8-IUYoPOUNoQozog8RQMuhWCK0TOUXjxeuLbDk69Qd60LHgeLF2CCr3T8xq_Q6rp2Bs_XOkHCzuOZtdmiDc6sXWigjb34Ht_cwmMbIp74tfYGKrxcQ2wC1GB-kTnEXm622gU6sbpOcLm_Q7R8nCwfnrPp7Onl4X6aaV6oNrOc0YpYpakiVo6FAqtAQ87oWFspGRHWcrCUMlBmVYhKEJMXsjCSiRXP-RDd7GI_YvjsILVl45KButYeQpdKpiRnSpGc9uhoh5oYUopgy4_omr5_SUm53bnc7Vzud-4N1_vsbtVAdcD_hu2B2x3QG8tN6KLvm_6X9gNYUIjV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653266081</pqid></control><display><type>article</type><title>In Situ Evolution of Secondary Metallic Phases in Off-Stoichiometric ZrNiSn for Enhanced Thermoelectric Performance</title><source>American Chemical Society Journals</source><creator>Johari, Kishor Kumar ; Sharma, Durgesh Kumar ; Verma, Ajay Kumar ; Bhardwaj, Ruchi ; Chauhan, Nagendra S ; Kumar, Sudhir ; Singh, Manvendra Narayan ; Bathula, Sivaiah ; Gahtori, Bhasker</creator><creatorcontrib>Johari, Kishor Kumar ; Sharma, Durgesh Kumar ; Verma, Ajay Kumar ; Bhardwaj, Ruchi ; Chauhan, Nagendra S ; Kumar, Sudhir ; Singh, Manvendra Narayan ; Bathula, Sivaiah ; Gahtori, Bhasker</creatorcontrib><description>The full-Heusler (FH) inclusions in the half-Heusler (HH) matrix is a well-studied approach to reduce the lattice thermal conductivity of ZrNiSn HH alloy. However, excess Ni in ZrNiSn may lead to the in situ formation of FH and/or HH alloys with interstitial Ni defects. The excess Ni develops intermediate electronic states in the band gap of ZrNiSn and also generates defects to scatter phonons, thus providing additional control to tailor electronic and phonon transport properties synergistically. In this work, we present the implication of isoelectronic Ge-doping and excess Ni on the thermoelectric transport of ZrNiSn. The synthesized ZrNi1.04Sn1–x Ge x (x = 0–0.04) samples were prepared by arc-melting and spark plasma sintering, and were extensively probed for microstructural analysis. The in situ evolution of minor secondary phases, i.e., FH, Ni–Sn, and Sn–Zr, primarily observed post sintering resulted in simultaneous optimization of the electrical power factor and lattice thermal conductivity. A ZT of ∼1.06 at ∼873 K was attained, which is among the highest for Hf-free ZrNiSn-based HH alloys. Additionally, ab initio calculations based on density functional theory (DFT) were performed to provide comparative insights into experimentally measured properties and understand underlying physics. Further, mechanical properties were experimentally extracted to determine the usability of synthesized alloys for device fabrication.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c03065</identifier><identifier>PMID: 35442621</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2022-05, Vol.14 (17), p.19579-19593</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-f321d0f6a160f5746ef6eae8217af55204ff3ef112e6cb94d40c8959c524b383</citedby><cites>FETCH-LOGICAL-a396t-f321d0f6a160f5746ef6eae8217af55204ff3ef112e6cb94d40c8959c524b383</cites><orcidid>0000-0003-2240-6637 ; 0000-0002-2222-7906 ; 0000-0003-2579-6642 ; 0000-0001-6093-6351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c03065$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c03065$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35442621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johari, Kishor Kumar</creatorcontrib><creatorcontrib>Sharma, Durgesh Kumar</creatorcontrib><creatorcontrib>Verma, Ajay Kumar</creatorcontrib><creatorcontrib>Bhardwaj, Ruchi</creatorcontrib><creatorcontrib>Chauhan, Nagendra S</creatorcontrib><creatorcontrib>Kumar, Sudhir</creatorcontrib><creatorcontrib>Singh, Manvendra Narayan</creatorcontrib><creatorcontrib>Bathula, Sivaiah</creatorcontrib><creatorcontrib>Gahtori, Bhasker</creatorcontrib><title>In Situ Evolution of Secondary Metallic Phases in Off-Stoichiometric ZrNiSn for Enhanced Thermoelectric Performance</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The full-Heusler (FH) inclusions in the half-Heusler (HH) matrix is a well-studied approach to reduce the lattice thermal conductivity of ZrNiSn HH alloy. However, excess Ni in ZrNiSn may lead to the in situ formation of FH and/or HH alloys with interstitial Ni defects. The excess Ni develops intermediate electronic states in the band gap of ZrNiSn and also generates defects to scatter phonons, thus providing additional control to tailor electronic and phonon transport properties synergistically. In this work, we present the implication of isoelectronic Ge-doping and excess Ni on the thermoelectric transport of ZrNiSn. The synthesized ZrNi1.04Sn1–x Ge x (x = 0–0.04) samples were prepared by arc-melting and spark plasma sintering, and were extensively probed for microstructural analysis. The in situ evolution of minor secondary phases, i.e., FH, Ni–Sn, and Sn–Zr, primarily observed post sintering resulted in simultaneous optimization of the electrical power factor and lattice thermal conductivity. A ZT of ∼1.06 at ∼873 K was attained, which is among the highest for Hf-free ZrNiSn-based HH alloys. Additionally, ab initio calculations based on density functional theory (DFT) were performed to provide comparative insights into experimentally measured properties and understand underlying physics. Further, mechanical properties were experimentally extracted to determine the usability of synthesized alloys for device fabrication.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEUxIMoVqtXj5KjCFvz3d2jSP2AagvtycuSZl9oym6iya7gf-_W1t48vQfzm4EZhK4oGVHC6J02STduxAzhRMkjdEYLIbKcSXZ8-IUYoPOUNoQozog8RQMuhWCK0TOUXjxeuLbDk69Qd60LHgeLF2CCr3T8xq_Q6rp2Bs_XOkHCzuOZtdmiDc6sXWigjb34Ht_cwmMbIp74tfYGKrxcQ2wC1GB-kTnEXm622gU6sbpOcLm_Q7R8nCwfnrPp7Onl4X6aaV6oNrOc0YpYpakiVo6FAqtAQ87oWFspGRHWcrCUMlBmVYhKEJMXsjCSiRXP-RDd7GI_YvjsILVl45KButYeQpdKpiRnSpGc9uhoh5oYUopgy4_omr5_SUm53bnc7Vzud-4N1_vsbtVAdcD_hu2B2x3QG8tN6KLvm_6X9gNYUIjV</recordid><startdate>20220504</startdate><enddate>20220504</enddate><creator>Johari, Kishor Kumar</creator><creator>Sharma, Durgesh Kumar</creator><creator>Verma, Ajay Kumar</creator><creator>Bhardwaj, Ruchi</creator><creator>Chauhan, Nagendra S</creator><creator>Kumar, Sudhir</creator><creator>Singh, Manvendra Narayan</creator><creator>Bathula, Sivaiah</creator><creator>Gahtori, Bhasker</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2240-6637</orcidid><orcidid>https://orcid.org/0000-0002-2222-7906</orcidid><orcidid>https://orcid.org/0000-0003-2579-6642</orcidid><orcidid>https://orcid.org/0000-0001-6093-6351</orcidid></search><sort><creationdate>20220504</creationdate><title>In Situ Evolution of Secondary Metallic Phases in Off-Stoichiometric ZrNiSn for Enhanced Thermoelectric Performance</title><author>Johari, Kishor Kumar ; Sharma, Durgesh Kumar ; Verma, Ajay Kumar ; Bhardwaj, Ruchi ; Chauhan, Nagendra S ; Kumar, Sudhir ; Singh, Manvendra Narayan ; Bathula, Sivaiah ; Gahtori, Bhasker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-f321d0f6a160f5746ef6eae8217af55204ff3ef112e6cb94d40c8959c524b383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johari, Kishor Kumar</creatorcontrib><creatorcontrib>Sharma, Durgesh Kumar</creatorcontrib><creatorcontrib>Verma, Ajay Kumar</creatorcontrib><creatorcontrib>Bhardwaj, Ruchi</creatorcontrib><creatorcontrib>Chauhan, Nagendra S</creatorcontrib><creatorcontrib>Kumar, Sudhir</creatorcontrib><creatorcontrib>Singh, Manvendra Narayan</creatorcontrib><creatorcontrib>Bathula, Sivaiah</creatorcontrib><creatorcontrib>Gahtori, Bhasker</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johari, Kishor Kumar</au><au>Sharma, Durgesh Kumar</au><au>Verma, Ajay Kumar</au><au>Bhardwaj, Ruchi</au><au>Chauhan, Nagendra S</au><au>Kumar, Sudhir</au><au>Singh, Manvendra Narayan</au><au>Bathula, Sivaiah</au><au>Gahtori, Bhasker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Evolution of Secondary Metallic Phases in Off-Stoichiometric ZrNiSn for Enhanced Thermoelectric Performance</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-05-04</date><risdate>2022</risdate><volume>14</volume><issue>17</issue><spage>19579</spage><epage>19593</epage><pages>19579-19593</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The full-Heusler (FH) inclusions in the half-Heusler (HH) matrix is a well-studied approach to reduce the lattice thermal conductivity of ZrNiSn HH alloy. However, excess Ni in ZrNiSn may lead to the in situ formation of FH and/or HH alloys with interstitial Ni defects. The excess Ni develops intermediate electronic states in the band gap of ZrNiSn and also generates defects to scatter phonons, thus providing additional control to tailor electronic and phonon transport properties synergistically. In this work, we present the implication of isoelectronic Ge-doping and excess Ni on the thermoelectric transport of ZrNiSn. The synthesized ZrNi1.04Sn1–x Ge x (x = 0–0.04) samples were prepared by arc-melting and spark plasma sintering, and were extensively probed for microstructural analysis. The in situ evolution of minor secondary phases, i.e., FH, Ni–Sn, and Sn–Zr, primarily observed post sintering resulted in simultaneous optimization of the electrical power factor and lattice thermal conductivity. A ZT of ∼1.06 at ∼873 K was attained, which is among the highest for Hf-free ZrNiSn-based HH alloys. Additionally, ab initio calculations based on density functional theory (DFT) were performed to provide comparative insights into experimentally measured properties and understand underlying physics. Further, mechanical properties were experimentally extracted to determine the usability of synthesized alloys for device fabrication.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35442621</pmid><doi>10.1021/acsami.2c03065</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2240-6637</orcidid><orcidid>https://orcid.org/0000-0002-2222-7906</orcidid><orcidid>https://orcid.org/0000-0003-2579-6642</orcidid><orcidid>https://orcid.org/0000-0001-6093-6351</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-05, Vol.14 (17), p.19579-19593
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2653266081
source American Chemical Society Journals
subjects Energy, Environmental, and Catalysis Applications
title In Situ Evolution of Secondary Metallic Phases in Off-Stoichiometric ZrNiSn for Enhanced Thermoelectric Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A22%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Evolution%20of%20Secondary%20Metallic%20Phases%20in%20Off-Stoichiometric%20ZrNiSn%20for%20Enhanced%20Thermoelectric%20Performance&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Johari,%20Kishor%20Kumar&rft.date=2022-05-04&rft.volume=14&rft.issue=17&rft.spage=19579&rft.epage=19593&rft.pages=19579-19593&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c03065&rft_dat=%3Cproquest_cross%3E2653266081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2653266081&rft_id=info:pmid/35442621&rfr_iscdi=true