Four-step exponential-fitted methods for nonlinear physical problems
We describe a four-step exponential-fitted method for systems of second-order differential equations of the form y″ = ƒ(x,y). This is a sixth-order method depending on five parameters which are automatically adjusted in terms of the equations to be solved. Some other relevant features are as follows...
Gespeichert in:
Veröffentlicht in: | Computer physics communications 1997, Vol.100 (1), p.56-70 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 70 |
---|---|
container_issue | 1 |
container_start_page | 56 |
container_title | Computer physics communications |
container_volume | 100 |
creator | Ixaru, L.Gr Berghe, G.Vanden De Meyer, H. Van Dacle, M. |
description | We describe a four-step exponential-fitted method for systems of second-order differential equations of the form
y″ = ƒ(x,y). This is a sixth-order method depending on five parameters which are automatically adjusted in terms of the equations to be solved. Some other relevant features are as follows: (i) it requires only two solution values to start; (ii) it allows modification of the stepsize during the integration process; (iii) it works in the predictor-corrector mode with only one function evaluation per step; (iv) the whole integration process is controlled in terms of the requested value for the local truncation error.
Our method was tested on a representative set of problems taken from physics and found to behave particularly well on the problems involving oscillatory phenomena. A selection of experimental results is given in which our method is compared with a widely used code. |
doi_str_mv | 10.1016/S0010-4655(96)00147-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26531739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465596001476</els_id><sourcerecordid>26531739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-a1404f790313a447f0ec6f13aeb1640ce2715e6fbaabc11f367fc9e3ce9b7f733</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKs_QdiT6CGaNNmkOYlUq0LBg3oO2eyERnY3a5IV--_dtuLV08zAe294H0LnlFxTQsXNKyGUYC7K8lKJq_HgEosDNKFzqfBMcX6IJn-SY3SS0gchRErFJuh-GYaIU4a-gO8-dNBlbxrsfM5QFy3kdahT4UIsutA1vgMTi369Sd6apuhjqBpo0yk6cqZJcPY7p-h9-fC2eMKrl8fnxd0KW8bmGRvKCXdSEUaZ4Vw6Ala4cYeKCk4szCQtQbjKmMpS6piQzipgFlQlnWRsii72uePjzwFS1q1PFprGdBCGpGeiZFQyNQrLvdDGkFIEp_voWxM3mhK9ZaZ3zPQWiFZC75hpMfpu9z4YW3x5iDpZD52F2kewWdfB_5PwAx-ZdLE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26531739</pqid></control><display><type>article</type><title>Four-step exponential-fitted methods for nonlinear physical problems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ixaru, L.Gr ; Berghe, G.Vanden ; De Meyer, H. ; Van Dacle, M.</creator><creatorcontrib>Ixaru, L.Gr ; Berghe, G.Vanden ; De Meyer, H. ; Van Dacle, M.</creatorcontrib><description>We describe a four-step exponential-fitted method for systems of second-order differential equations of the form
y″ = ƒ(x,y). This is a sixth-order method depending on five parameters which are automatically adjusted in terms of the equations to be solved. Some other relevant features are as follows: (i) it requires only two solution values to start; (ii) it allows modification of the stepsize during the integration process; (iii) it works in the predictor-corrector mode with only one function evaluation per step; (iv) the whole integration process is controlled in terms of the requested value for the local truncation error.
Our method was tested on a representative set of problems taken from physics and found to behave particularly well on the problems involving oscillatory phenomena. A selection of experimental results is given in which our method is compared with a widely used code.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/S0010-4655(96)00147-6</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Error control ; Exponential fitting ; IVP (initial-value problems) ; Multistep methods ; Predictor-corrector ; Stepwise control ; Systems of nonlinear second-order ODEs</subject><ispartof>Computer physics communications, 1997, Vol.100 (1), p.56-70</ispartof><rights>1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-a1404f790313a447f0ec6f13aeb1640ce2715e6fbaabc11f367fc9e3ce9b7f733</citedby><cites>FETCH-LOGICAL-c338t-a1404f790313a447f0ec6f13aeb1640ce2715e6fbaabc11f367fc9e3ce9b7f733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0010-4655(96)00147-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ixaru, L.Gr</creatorcontrib><creatorcontrib>Berghe, G.Vanden</creatorcontrib><creatorcontrib>De Meyer, H.</creatorcontrib><creatorcontrib>Van Dacle, M.</creatorcontrib><title>Four-step exponential-fitted methods for nonlinear physical problems</title><title>Computer physics communications</title><description>We describe a four-step exponential-fitted method for systems of second-order differential equations of the form
y″ = ƒ(x,y). This is a sixth-order method depending on five parameters which are automatically adjusted in terms of the equations to be solved. Some other relevant features are as follows: (i) it requires only two solution values to start; (ii) it allows modification of the stepsize during the integration process; (iii) it works in the predictor-corrector mode with only one function evaluation per step; (iv) the whole integration process is controlled in terms of the requested value for the local truncation error.
Our method was tested on a representative set of problems taken from physics and found to behave particularly well on the problems involving oscillatory phenomena. A selection of experimental results is given in which our method is compared with a widely used code.</description><subject>Error control</subject><subject>Exponential fitting</subject><subject>IVP (initial-value problems)</subject><subject>Multistep methods</subject><subject>Predictor-corrector</subject><subject>Stepwise control</subject><subject>Systems of nonlinear second-order ODEs</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhYMoWKs_QdiT6CGaNNmkOYlUq0LBg3oO2eyERnY3a5IV--_dtuLV08zAe294H0LnlFxTQsXNKyGUYC7K8lKJq_HgEosDNKFzqfBMcX6IJn-SY3SS0gchRErFJuh-GYaIU4a-gO8-dNBlbxrsfM5QFy3kdahT4UIsutA1vgMTi369Sd6apuhjqBpo0yk6cqZJcPY7p-h9-fC2eMKrl8fnxd0KW8bmGRvKCXdSEUaZ4Vw6Ala4cYeKCk4szCQtQbjKmMpS6piQzipgFlQlnWRsii72uePjzwFS1q1PFprGdBCGpGeiZFQyNQrLvdDGkFIEp_voWxM3mhK9ZaZ3zPQWiFZC75hpMfpu9z4YW3x5iDpZD52F2kewWdfB_5PwAx-ZdLE</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Ixaru, L.Gr</creator><creator>Berghe, G.Vanden</creator><creator>De Meyer, H.</creator><creator>Van Dacle, M.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1997</creationdate><title>Four-step exponential-fitted methods for nonlinear physical problems</title><author>Ixaru, L.Gr ; Berghe, G.Vanden ; De Meyer, H. ; Van Dacle, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-a1404f790313a447f0ec6f13aeb1640ce2715e6fbaabc11f367fc9e3ce9b7f733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Error control</topic><topic>Exponential fitting</topic><topic>IVP (initial-value problems)</topic><topic>Multistep methods</topic><topic>Predictor-corrector</topic><topic>Stepwise control</topic><topic>Systems of nonlinear second-order ODEs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ixaru, L.Gr</creatorcontrib><creatorcontrib>Berghe, G.Vanden</creatorcontrib><creatorcontrib>De Meyer, H.</creatorcontrib><creatorcontrib>Van Dacle, M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ixaru, L.Gr</au><au>Berghe, G.Vanden</au><au>De Meyer, H.</au><au>Van Dacle, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Four-step exponential-fitted methods for nonlinear physical problems</atitle><jtitle>Computer physics communications</jtitle><date>1997</date><risdate>1997</risdate><volume>100</volume><issue>1</issue><spage>56</spage><epage>70</epage><pages>56-70</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>We describe a four-step exponential-fitted method for systems of second-order differential equations of the form
y″ = ƒ(x,y). This is a sixth-order method depending on five parameters which are automatically adjusted in terms of the equations to be solved. Some other relevant features are as follows: (i) it requires only two solution values to start; (ii) it allows modification of the stepsize during the integration process; (iii) it works in the predictor-corrector mode with only one function evaluation per step; (iv) the whole integration process is controlled in terms of the requested value for the local truncation error.
Our method was tested on a representative set of problems taken from physics and found to behave particularly well on the problems involving oscillatory phenomena. A selection of experimental results is given in which our method is compared with a widely used code.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0010-4655(96)00147-6</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4655 |
ispartof | Computer physics communications, 1997, Vol.100 (1), p.56-70 |
issn | 0010-4655 1879-2944 |
language | eng |
recordid | cdi_proquest_miscellaneous_26531739 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Error control Exponential fitting IVP (initial-value problems) Multistep methods Predictor-corrector Stepwise control Systems of nonlinear second-order ODEs |
title | Four-step exponential-fitted methods for nonlinear physical problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Four-step%20exponential-fitted%20methods%20for%20nonlinear%20physical%20problems&rft.jtitle=Computer%20physics%20communications&rft.au=Ixaru,%20L.Gr&rft.date=1997&rft.volume=100&rft.issue=1&rft.spage=56&rft.epage=70&rft.pages=56-70&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/S0010-4655(96)00147-6&rft_dat=%3Cproquest_cross%3E26531739%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26531739&rft_id=info:pmid/&rft_els_id=S0010465596001476&rfr_iscdi=true |