Employing biochemical biomarkers for building decision tree models to predict bipolar disorder from major depressive disorder

Conventional biochemical parameters may have predictive values for use in clinical identification between bipolar disorder (BD) and major depressive disorder (MDD). This study enrolled 2470 hospitalized patients with BD (n = 1333) or MDD (n = 1137) at reproductive age from 2009 to 2018 in China. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of affective disorders 2022-07, Vol.308, p.190-198
Hauptverfasser: Zhu, Yuncheng, Wu, Xiaohui, Liu, Hongmei, Niu, Zhiang, Zhao, Jie, Wang, Fan, Mao, Ruizhi, Guo, Xiaoyun, Zhang, Chen, Wang, Zuowei, Chen, Jun, Fang, Yiru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conventional biochemical parameters may have predictive values for use in clinical identification between bipolar disorder (BD) and major depressive disorder (MDD). This study enrolled 2470 hospitalized patients with BD (n = 1333) or MDD (n = 1137) at reproductive age from 2009 to 2018 in China. We extracted 8 parameters, uric acid (UA), direct bilirubin (DBIL), indirect bilirubin (IDBIL), lactic dehydrogenase (LDH), free triiodothyronine (FT3), thyroid-stimulating hormone (TSH), high-density lipoprotein (HDL) and prealbumin of male, patients and 12 parameters, UA, DBIL, IBIL, LDH, FT3, TSH, glutamic-pyruvic transaminase (GPT), white blood cell (WBC), alkaline phosphatase (ALP), fasting blood glucose (FBG), triglyceride and low-density lipoprotein (LDL) of female patients. Backward stepwise multivariate regression analysis and the Chi-Square Automatic Interaction Detection (CHAID) segmentation analysis via SPSS Decision Tree were implemented to define the discrimination of BD and MDD. DBIL was extracted as the first splitting variable, with LDH and IBIL as the second, TSH and prealbumin as the third in the model of male patients (p-value 
ISSN:0165-0327
1573-2517
DOI:10.1016/j.jad.2022.03.080