Effects of silicon additions on the mechanical properties and microstructure of high speed steels
The effects of silicon additions up to 3.5 wt% on the mechanical properties and microstructure of high speed steels 6W3Mo2Cr4V, W3Mo2Cr4V and W9Mo3Cr4V have been investigated. In order to understand these effects further, a Fe16Mo0.9C alloy is also used. The results show that silicon additions can...
Gespeichert in:
Veröffentlicht in: | Acta Materialia 1997-11, Vol.45 (11), p.4703-4712 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4712 |
---|---|
container_issue | 11 |
container_start_page | 4703 |
container_title | Acta Materialia |
container_volume | 45 |
creator | Pan, Fusheng Ding, Peidao Zhou, Shouze Kang, Mokuang Edmonds, D.V. |
description | The effects of silicon additions up to 3.5 wt% on the mechanical properties and microstructure of high speed steels 6W3Mo2Cr4V, W3Mo2Cr4V and W9Mo3Cr4V have been investigated. In order to understand these effects further, a Fe16Mo0.9C alloy is also used. The results show that silicon additions can increase the temper hardness of steels Fe16Mo0.9C, 6W3Mo2Cr4V and W3Mo2Cr4V, but yield an opposite influence on the temper hardness in W9Mo3Cr4V steel. A critical tempering temperature exists for the bending strength of high speed steels containing silicon. If tempering is carried out at temperatures lower than the critical temperature, the bending strength of the high speed steels can be improved by the addition of silicon, otherwise their bending strength is decreased. Transmission electron microscopy reveals that silicon additions can obviously refine secondary hardening carbides and inhibit the formation of M
3C cementite at peak temperature. However, they are also found to accelerate both the depletion of martensite and the formation of coarse M
6C precipitates during tempering. The mechanism whereby silicon additions affect the secondary hardness of high speed steels is discussed in detail, and the types of high speed steel in which silicon additions can be used are suggested. |
doi_str_mv | 10.1016/S1359-6454(97)00121-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_26523117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645497001213</els_id><sourcerecordid>26523117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-3397db7f8bf7973507542f1591036149813c583f6a02c08595b4b8a1e39528a23</originalsourceid><addsrcrecordid>eNqFkE2r1DAUhosoOI7-BCGCiHdRzUfTJCuR4XqvMOBCXYdMeuJE2rTmZAT_venM6PauEsJzTt73aZqXjL5jlPXvvzIhTdt3sntr1A2ljLNWPGo2TCvR8k6Kx_X-D3naPEP8uUKqo5vG3YYAviCZA8E4Rj8n4oYhljin-phIOQKZwB9dit6NZMnzArlEQOLSQKbo84wln3w5ZViXHOOPI8EFYCBYAEZ83jwJbkR4cT23zfdPt9929-3-y93n3cd964URpRXCqOGggj4EZZSQVMmOByYNo6JnndFMeKlF6B3lnmpp5KE7aMdAGMm142LbvLrsrXmiRR9LTV3rpFrPSlMby8q8uTC1xq8TYLFTRA_j6BLMJ7S8l1wwpiooL-BaDzMEu-Q4ufzHMmpX6fYs3a5GrVH2LN2KOvf6-oHDqitkl3zE_8OcGi0lrdiHC1b9wO8Iec0LycMQ8xp3mOMDH_0F_sCU-A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26523117</pqid></control><display><type>article</type><title>Effects of silicon additions on the mechanical properties and microstructure of high speed steels</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Pan, Fusheng ; Ding, Peidao ; Zhou, Shouze ; Kang, Mokuang ; Edmonds, D.V.</creator><creatorcontrib>Pan, Fusheng ; Ding, Peidao ; Zhou, Shouze ; Kang, Mokuang ; Edmonds, D.V.</creatorcontrib><description>The effects of silicon additions up to 3.5 wt% on the mechanical properties and microstructure of high speed steels 6W3Mo2Cr4V, W3Mo2Cr4V and W9Mo3Cr4V have been investigated. In order to understand these effects further, a Fe16Mo0.9C alloy is also used. The results show that silicon additions can increase the temper hardness of steels Fe16Mo0.9C, 6W3Mo2Cr4V and W3Mo2Cr4V, but yield an opposite influence on the temper hardness in W9Mo3Cr4V steel. A critical tempering temperature exists for the bending strength of high speed steels containing silicon. If tempering is carried out at temperatures lower than the critical temperature, the bending strength of the high speed steels can be improved by the addition of silicon, otherwise their bending strength is decreased. Transmission electron microscopy reveals that silicon additions can obviously refine secondary hardening carbides and inhibit the formation of M
3C cementite at peak temperature. However, they are also found to accelerate both the depletion of martensite and the formation of coarse M
6C precipitates during tempering. The mechanism whereby silicon additions affect the secondary hardness of high speed steels is discussed in detail, and the types of high speed steel in which silicon additions can be used are suggested.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/S1359-6454(97)00121-3</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; CHROMIUM ALLOYS ; Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization ; Cold working, work hardening; annealing, quenching, tempering, recovery, and recrystallization; textures ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; MATERIALS SCIENCE ; MECHANICAL PROPERTIES ; METALLURGICAL EFFECTS ; Metals. Metallurgy ; MICROSTRUCTURE ; MOLYBDENUM ALLOYS ; Physics ; SILICON ADDITIONS ; STEELS ; Treatment of materials and its effects on microstructure and properties ; TUNGSTEN ALLOYS ; VANADIUM ALLOYS</subject><ispartof>Acta Materialia, 1997-11, Vol.45 (11), p.4703-4712</ispartof><rights>1997</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-3397db7f8bf7973507542f1591036149813c583f6a02c08595b4b8a1e39528a23</citedby><cites>FETCH-LOGICAL-c393t-3397db7f8bf7973507542f1591036149813c583f6a02c08595b4b8a1e39528a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1359-6454(97)00121-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2098550$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/590015$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Fusheng</creatorcontrib><creatorcontrib>Ding, Peidao</creatorcontrib><creatorcontrib>Zhou, Shouze</creatorcontrib><creatorcontrib>Kang, Mokuang</creatorcontrib><creatorcontrib>Edmonds, D.V.</creatorcontrib><title>Effects of silicon additions on the mechanical properties and microstructure of high speed steels</title><title>Acta Materialia</title><description>The effects of silicon additions up to 3.5 wt% on the mechanical properties and microstructure of high speed steels 6W3Mo2Cr4V, W3Mo2Cr4V and W9Mo3Cr4V have been investigated. In order to understand these effects further, a Fe16Mo0.9C alloy is also used. The results show that silicon additions can increase the temper hardness of steels Fe16Mo0.9C, 6W3Mo2Cr4V and W3Mo2Cr4V, but yield an opposite influence on the temper hardness in W9Mo3Cr4V steel. A critical tempering temperature exists for the bending strength of high speed steels containing silicon. If tempering is carried out at temperatures lower than the critical temperature, the bending strength of the high speed steels can be improved by the addition of silicon, otherwise their bending strength is decreased. Transmission electron microscopy reveals that silicon additions can obviously refine secondary hardening carbides and inhibit the formation of M
3C cementite at peak temperature. However, they are also found to accelerate both the depletion of martensite and the formation of coarse M
6C precipitates during tempering. The mechanism whereby silicon additions affect the secondary hardness of high speed steels is discussed in detail, and the types of high speed steel in which silicon additions can be used are suggested.</description><subject>Applied sciences</subject><subject>CHROMIUM ALLOYS</subject><subject>Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization</subject><subject>Cold working, work hardening; annealing, quenching, tempering, recovery, and recrystallization; textures</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>MATERIALS SCIENCE</subject><subject>MECHANICAL PROPERTIES</subject><subject>METALLURGICAL EFFECTS</subject><subject>Metals. Metallurgy</subject><subject>MICROSTRUCTURE</subject><subject>MOLYBDENUM ALLOYS</subject><subject>Physics</subject><subject>SILICON ADDITIONS</subject><subject>STEELS</subject><subject>Treatment of materials and its effects on microstructure and properties</subject><subject>TUNGSTEN ALLOYS</subject><subject>VANADIUM ALLOYS</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkE2r1DAUhosoOI7-BCGCiHdRzUfTJCuR4XqvMOBCXYdMeuJE2rTmZAT_venM6PauEsJzTt73aZqXjL5jlPXvvzIhTdt3sntr1A2ljLNWPGo2TCvR8k6Kx_X-D3naPEP8uUKqo5vG3YYAviCZA8E4Rj8n4oYhljin-phIOQKZwB9dit6NZMnzArlEQOLSQKbo84wln3w5ZViXHOOPI8EFYCBYAEZ83jwJbkR4cT23zfdPt9929-3-y93n3cd964URpRXCqOGggj4EZZSQVMmOByYNo6JnndFMeKlF6B3lnmpp5KE7aMdAGMm142LbvLrsrXmiRR9LTV3rpFrPSlMby8q8uTC1xq8TYLFTRA_j6BLMJ7S8l1wwpiooL-BaDzMEu-Q4ufzHMmpX6fYs3a5GrVH2LN2KOvf6-oHDqitkl3zE_8OcGi0lrdiHC1b9wO8Iec0LycMQ8xp3mOMDH_0F_sCU-A</recordid><startdate>19971101</startdate><enddate>19971101</enddate><creator>Pan, Fusheng</creator><creator>Ding, Peidao</creator><creator>Zhou, Shouze</creator><creator>Kang, Mokuang</creator><creator>Edmonds, D.V.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>19971101</creationdate><title>Effects of silicon additions on the mechanical properties and microstructure of high speed steels</title><author>Pan, Fusheng ; Ding, Peidao ; Zhou, Shouze ; Kang, Mokuang ; Edmonds, D.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-3397db7f8bf7973507542f1591036149813c583f6a02c08595b4b8a1e39528a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>CHROMIUM ALLOYS</topic><topic>Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization</topic><topic>Cold working, work hardening; annealing, quenching, tempering, recovery, and recrystallization; textures</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>MATERIALS SCIENCE</topic><topic>MECHANICAL PROPERTIES</topic><topic>METALLURGICAL EFFECTS</topic><topic>Metals. Metallurgy</topic><topic>MICROSTRUCTURE</topic><topic>MOLYBDENUM ALLOYS</topic><topic>Physics</topic><topic>SILICON ADDITIONS</topic><topic>STEELS</topic><topic>Treatment of materials and its effects on microstructure and properties</topic><topic>TUNGSTEN ALLOYS</topic><topic>VANADIUM ALLOYS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Fusheng</creatorcontrib><creatorcontrib>Ding, Peidao</creatorcontrib><creatorcontrib>Zhou, Shouze</creatorcontrib><creatorcontrib>Kang, Mokuang</creatorcontrib><creatorcontrib>Edmonds, D.V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Acta Materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Fusheng</au><au>Ding, Peidao</au><au>Zhou, Shouze</au><au>Kang, Mokuang</au><au>Edmonds, D.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of silicon additions on the mechanical properties and microstructure of high speed steels</atitle><jtitle>Acta Materialia</jtitle><date>1997-11-01</date><risdate>1997</risdate><volume>45</volume><issue>11</issue><spage>4703</spage><epage>4712</epage><pages>4703-4712</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The effects of silicon additions up to 3.5 wt% on the mechanical properties and microstructure of high speed steels 6W3Mo2Cr4V, W3Mo2Cr4V and W9Mo3Cr4V have been investigated. In order to understand these effects further, a Fe16Mo0.9C alloy is also used. The results show that silicon additions can increase the temper hardness of steels Fe16Mo0.9C, 6W3Mo2Cr4V and W3Mo2Cr4V, but yield an opposite influence on the temper hardness in W9Mo3Cr4V steel. A critical tempering temperature exists for the bending strength of high speed steels containing silicon. If tempering is carried out at temperatures lower than the critical temperature, the bending strength of the high speed steels can be improved by the addition of silicon, otherwise their bending strength is decreased. Transmission electron microscopy reveals that silicon additions can obviously refine secondary hardening carbides and inhibit the formation of M
3C cementite at peak temperature. However, they are also found to accelerate both the depletion of martensite and the formation of coarse M
6C precipitates during tempering. The mechanism whereby silicon additions affect the secondary hardness of high speed steels is discussed in detail, and the types of high speed steel in which silicon additions can be used are suggested.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1359-6454(97)00121-3</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta Materialia, 1997-11, Vol.45 (11), p.4703-4712 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_proquest_miscellaneous_26523117 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences CHROMIUM ALLOYS Cold working, work hardening annealing, post-deformation annealing, quenching, tempering recovery, and crystallization Cold working, work hardening annealing, quenching, tempering, recovery, and recrystallization textures Cross-disciplinary physics: materials science rheology Exact sciences and technology MATERIALS SCIENCE MECHANICAL PROPERTIES METALLURGICAL EFFECTS Metals. Metallurgy MICROSTRUCTURE MOLYBDENUM ALLOYS Physics SILICON ADDITIONS STEELS Treatment of materials and its effects on microstructure and properties TUNGSTEN ALLOYS VANADIUM ALLOYS |
title | Effects of silicon additions on the mechanical properties and microstructure of high speed steels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A30%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20silicon%20additions%20on%20the%20mechanical%20properties%20and%20microstructure%20of%20high%20speed%20steels&rft.jtitle=Acta%20Materialia&rft.au=Pan,%20Fusheng&rft.date=1997-11-01&rft.volume=45&rft.issue=11&rft.spage=4703&rft.epage=4712&rft.pages=4703-4712&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/S1359-6454(97)00121-3&rft_dat=%3Cproquest_osti_%3E26523117%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26523117&rft_id=info:pmid/&rft_els_id=S1359645497001213&rfr_iscdi=true |