Fifty-year study of the Peierls-Nabarro stress

The origin of the Peierls model and its relation to that of Frenkel and Kontorova are described. Within this model there are three essentially different formulae for the stress required to move a dislocation rigidly through a perfect lattice, associated with the names of Peierls, Nabarro and Hunting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 1997-08, Vol.234, p.67-76
1. Verfasser: Nabarro, F.R.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue
container_start_page 67
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 234
creator Nabarro, F.R.N.
description The origin of the Peierls model and its relation to that of Frenkel and Kontorova are described. Within this model there are three essentially different formulae for the stress required to move a dislocation rigidly through a perfect lattice, associated with the names of Peierls, Nabarro and Huntington. There are also three distinct approaches to experimental estimates of the Peierls stress, depending on the Bordoni internal friction peak, the flow stress at low temperatures and Harper-Dorn creep. The results in the case of close-packed metals can be reconciled with the aid of ideas due to Benoit et al. and to Schoeck. The analytical elegance of Peierls's solution depends on the assumption of a sinusoidal law of force across the glide plane. This is physically unrealistic. Foreman et al. and others have obtained interesting results using other laws of force, while still operating in the framework of the Peierls model. The locking-unlocking model extends the ideas to the case in which the dislocation core has two mechanically stable configurations.
doi_str_mv 10.1016/S0921-5093(97)00184-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26520915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509397001846</els_id><sourcerecordid>26520915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-e7be2456cffa759a47fafc9aad57c0f725aaf94e44b5efd70d99ec88936c6ad03</originalsourceid><addsrcrecordid>eNqFkEFLAzEUhIMoWKs_QdiT6CE12U02m5NIsSoUFdRzeE1eMLLt1mQr7L83bcWrp3eYb4Y3Q8g5ZxPOeH39ynTJqWS6utTqijHeCFofkBFvVEWFrupDMvpDjslJSp8sU4LJEZnMgu8HOiDEIvUbNxSdL_oPLF4wYGwTfYIFxNhlMWJKp-TIQ5vw7PeOyfvs7m36QOfP94_T2zm1olI9RbXAUsjaeg9KahDKg7cawEllmVelBPBaoBALid4p5rRG2zT5V1uDY9WYXOxz17H72mDqzTIki20LK-w2yZS1LJnmMoNyD9rYpRTRm3UMS4iD4cxs1zG7dcy2utHK7NYxdfbd7H2YW3znqibZgCuLLkS0vXFd-CfhB0cmbHU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26520915</pqid></control><display><type>article</type><title>Fifty-year study of the Peierls-Nabarro stress</title><source>Elsevier ScienceDirect Journals</source><creator>Nabarro, F.R.N.</creator><creatorcontrib>Nabarro, F.R.N.</creatorcontrib><description>The origin of the Peierls model and its relation to that of Frenkel and Kontorova are described. Within this model there are three essentially different formulae for the stress required to move a dislocation rigidly through a perfect lattice, associated with the names of Peierls, Nabarro and Huntington. There are also three distinct approaches to experimental estimates of the Peierls stress, depending on the Bordoni internal friction peak, the flow stress at low temperatures and Harper-Dorn creep. The results in the case of close-packed metals can be reconciled with the aid of ideas due to Benoit et al. and to Schoeck. The analytical elegance of Peierls's solution depends on the assumption of a sinusoidal law of force across the glide plane. This is physically unrealistic. Foreman et al. and others have obtained interesting results using other laws of force, while still operating in the framework of the Peierls model. The locking-unlocking model extends the ideas to the case in which the dislocation core has two mechanically stable configurations.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/S0921-5093(97)00184-6</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Dislocation cores ; Dislocations ; Peierls stress</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 1997-08, Vol.234, p.67-76</ispartof><rights>1997 Elsevier Science S.A. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-e7be2456cffa759a47fafc9aad57c0f725aaf94e44b5efd70d99ec88936c6ad03</citedby><cites>FETCH-LOGICAL-c437t-e7be2456cffa759a47fafc9aad57c0f725aaf94e44b5efd70d99ec88936c6ad03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509397001846$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Nabarro, F.R.N.</creatorcontrib><title>Fifty-year study of the Peierls-Nabarro stress</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>The origin of the Peierls model and its relation to that of Frenkel and Kontorova are described. Within this model there are three essentially different formulae for the stress required to move a dislocation rigidly through a perfect lattice, associated with the names of Peierls, Nabarro and Huntington. There are also three distinct approaches to experimental estimates of the Peierls stress, depending on the Bordoni internal friction peak, the flow stress at low temperatures and Harper-Dorn creep. The results in the case of close-packed metals can be reconciled with the aid of ideas due to Benoit et al. and to Schoeck. The analytical elegance of Peierls's solution depends on the assumption of a sinusoidal law of force across the glide plane. This is physically unrealistic. Foreman et al. and others have obtained interesting results using other laws of force, while still operating in the framework of the Peierls model. The locking-unlocking model extends the ideas to the case in which the dislocation core has two mechanically stable configurations.</description><subject>Dislocation cores</subject><subject>Dislocations</subject><subject>Peierls stress</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEUhIMoWKs_QdiT6CE12U02m5NIsSoUFdRzeE1eMLLt1mQr7L83bcWrp3eYb4Y3Q8g5ZxPOeH39ynTJqWS6utTqijHeCFofkBFvVEWFrupDMvpDjslJSp8sU4LJEZnMgu8HOiDEIvUbNxSdL_oPLF4wYGwTfYIFxNhlMWJKp-TIQ5vw7PeOyfvs7m36QOfP94_T2zm1olI9RbXAUsjaeg9KahDKg7cawEllmVelBPBaoBALid4p5rRG2zT5V1uDY9WYXOxz17H72mDqzTIki20LK-w2yZS1LJnmMoNyD9rYpRTRm3UMS4iD4cxs1zG7dcy2utHK7NYxdfbd7H2YW3znqibZgCuLLkS0vXFd-CfhB0cmbHU</recordid><startdate>19970830</startdate><enddate>19970830</enddate><creator>Nabarro, F.R.N.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>19970830</creationdate><title>Fifty-year study of the Peierls-Nabarro stress</title><author>Nabarro, F.R.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-e7be2456cffa759a47fafc9aad57c0f725aaf94e44b5efd70d99ec88936c6ad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Dislocation cores</topic><topic>Dislocations</topic><topic>Peierls stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nabarro, F.R.N.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nabarro, F.R.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fifty-year study of the Peierls-Nabarro stress</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>1997-08-30</date><risdate>1997</risdate><volume>234</volume><spage>67</spage><epage>76</epage><pages>67-76</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The origin of the Peierls model and its relation to that of Frenkel and Kontorova are described. Within this model there are three essentially different formulae for the stress required to move a dislocation rigidly through a perfect lattice, associated with the names of Peierls, Nabarro and Huntington. There are also three distinct approaches to experimental estimates of the Peierls stress, depending on the Bordoni internal friction peak, the flow stress at low temperatures and Harper-Dorn creep. The results in the case of close-packed metals can be reconciled with the aid of ideas due to Benoit et al. and to Schoeck. The analytical elegance of Peierls's solution depends on the assumption of a sinusoidal law of force across the glide plane. This is physically unrealistic. Foreman et al. and others have obtained interesting results using other laws of force, while still operating in the framework of the Peierls model. The locking-unlocking model extends the ideas to the case in which the dislocation core has two mechanically stable configurations.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0921-5093(97)00184-6</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 1997-08, Vol.234, p.67-76
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_26520915
source Elsevier ScienceDirect Journals
subjects Dislocation cores
Dislocations
Peierls stress
title Fifty-year study of the Peierls-Nabarro stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A09%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fifty-year%20study%20of%20the%20Peierls-Nabarro%20stress&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Nabarro,%20F.R.N.&rft.date=1997-08-30&rft.volume=234&rft.spage=67&rft.epage=76&rft.pages=67-76&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/S0921-5093(97)00184-6&rft_dat=%3Cproquest_cross%3E26520915%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26520915&rft_id=info:pmid/&rft_els_id=S0921509397001846&rfr_iscdi=true