Irreversible, self-aligned microfluidic packaging for chronic implant applications

Packaging is an often overlooked component in microfluidic devices for biomedical implant applications. Robust and reliable connectors to interface microscale and macroscale features are especially critical for chronic implant applications. Existing microfluidic packaging methods are incompatible wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of micromechanics and microengineering 2021-09, Vol.31 (9), p.1-10
Hauptverfasser: Szabo, Emily, Hess-Dunning, Allison
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 9
container_start_page 1
container_title Journal of micromechanics and microengineering
container_volume 31
creator Szabo, Emily
Hess-Dunning, Allison
description Packaging is an often overlooked component in microfluidic devices for biomedical implant applications. Robust and reliable connectors to interface microscale and macroscale features are especially critical for chronic implant applications. Existing microfluidic packaging methods are incompatible with emerging polymeric materials designed to enhance device integration with the surrounding tissue. A microfluidic connector scheme was developed to promote compatibility with novel materials and implant applications. The connectors and an adhesive wax were printed on a scaffold via additive manufacturing processes. The low-temperature packaging process entailed bonding the connector to a polymer nanocomposite-based intracortical microfluidic probe using an adhesive wax. The robustness of the packaging was assessed by measuring the tensile and shear bond strengths of the connector-adhesive wax-polymer film interface. After soak testing for 4 weeks, the bond strength continued to exceed the force required to infuse fluids through the microfluidic channel. Further, the shear bond strength exceeded typical probe insertion forces by at least 10-fold. These results support the use of the connector and thermal bonding method as a viable option for chronic implant applications.
doi_str_mv 10.1088/1361-6439/ac1994
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2652032015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2652032015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-8d9ec82e00e3a2a885686d3ff41e48808dbc5f5443714756ebf6f1f37c212f0a3</originalsourceid><addsrcrecordid>eNp9kc2LFDEQxYMo7rh69yR908O2m-p8dHIRlsWPhQVB9Bwy6cpsxnSnTboX_O_NMOugIJ4ClV-9qnqPkJdA3wJV6hKYhFZypi-tA635I7I5lR6TDdWStsCgPyPPStlTCqBAPSVnTHAGXOoN-XKTM95jLmEb8aIpGH1rY9hNODRjcDn5uIYhuGa27rvdhWnX-JQbd5fTVKthnKOdlsbOcwzOLiFN5Tl54m0s-OLhPSffPrz_ev2pvf388eb66rZ1XIqlVYNGpzqkFJntrFJCKjkw7zkgV4qqYeuEF5yzHngvJG699OBZ7zroPLXsnLw76s7rdsTB4bRkG82cw2jzT5NsMH__TOHO7NK90ZTqrpdV4M2DQE4_ViyLGUNxGOtFmNZiOik6yjoKoqL0iFZHSsnoT2OAmkMU5uC7OfhujlHUlld_rndq-O19BS6OQEiz2ac1T9Wt_-m9_ge-H0fDwGhDtajxmnnw7BfkzKFB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652032015</pqid></control><display><type>article</type><title>Irreversible, self-aligned microfluidic packaging for chronic implant applications</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Szabo, Emily ; Hess-Dunning, Allison</creator><creatorcontrib>Szabo, Emily ; Hess-Dunning, Allison</creatorcontrib><description>Packaging is an often overlooked component in microfluidic devices for biomedical implant applications. Robust and reliable connectors to interface microscale and macroscale features are especially critical for chronic implant applications. Existing microfluidic packaging methods are incompatible with emerging polymeric materials designed to enhance device integration with the surrounding tissue. A microfluidic connector scheme was developed to promote compatibility with novel materials and implant applications. The connectors and an adhesive wax were printed on a scaffold via additive manufacturing processes. The low-temperature packaging process entailed bonding the connector to a polymer nanocomposite-based intracortical microfluidic probe using an adhesive wax. The robustness of the packaging was assessed by measuring the tensile and shear bond strengths of the connector-adhesive wax-polymer film interface. After soak testing for 4 weeks, the bond strength continued to exceed the force required to infuse fluids through the microfluidic channel. Further, the shear bond strength exceeded typical probe insertion forces by at least 10-fold. These results support the use of the connector and thermal bonding method as a viable option for chronic implant applications.</description><identifier>ISSN: 0960-1317</identifier><identifier>EISSN: 1361-6439</identifier><identifier>DOI: 10.1088/1361-6439/ac1994</identifier><identifier>PMID: 35431469</identifier><identifier>CODEN: JMMIEZ</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>connector ; microfluidic ; neural interfaces ; packaging</subject><ispartof>Journal of micromechanics and microengineering, 2021-09, Vol.31 (9), p.1-10</ispartof><rights>2021 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-8d9ec82e00e3a2a885686d3ff41e48808dbc5f5443714756ebf6f1f37c212f0a3</citedby><cites>FETCH-LOGICAL-c465t-8d9ec82e00e3a2a885686d3ff41e48808dbc5f5443714756ebf6f1f37c212f0a3</cites><orcidid>0000-0003-4060-1145 ; 0000-0003-3976-4270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6439/ac1994/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35431469$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Szabo, Emily</creatorcontrib><creatorcontrib>Hess-Dunning, Allison</creatorcontrib><title>Irreversible, self-aligned microfluidic packaging for chronic implant applications</title><title>Journal of micromechanics and microengineering</title><addtitle>JMM</addtitle><addtitle>J. Micromech. Microeng</addtitle><description>Packaging is an often overlooked component in microfluidic devices for biomedical implant applications. Robust and reliable connectors to interface microscale and macroscale features are especially critical for chronic implant applications. Existing microfluidic packaging methods are incompatible with emerging polymeric materials designed to enhance device integration with the surrounding tissue. A microfluidic connector scheme was developed to promote compatibility with novel materials and implant applications. The connectors and an adhesive wax were printed on a scaffold via additive manufacturing processes. The low-temperature packaging process entailed bonding the connector to a polymer nanocomposite-based intracortical microfluidic probe using an adhesive wax. The robustness of the packaging was assessed by measuring the tensile and shear bond strengths of the connector-adhesive wax-polymer film interface. After soak testing for 4 weeks, the bond strength continued to exceed the force required to infuse fluids through the microfluidic channel. Further, the shear bond strength exceeded typical probe insertion forces by at least 10-fold. These results support the use of the connector and thermal bonding method as a viable option for chronic implant applications.</description><subject>connector</subject><subject>microfluidic</subject><subject>neural interfaces</subject><subject>packaging</subject><issn>0960-1317</issn><issn>1361-6439</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc2LFDEQxYMo7rh69yR908O2m-p8dHIRlsWPhQVB9Bwy6cpsxnSnTboX_O_NMOugIJ4ClV-9qnqPkJdA3wJV6hKYhFZypi-tA635I7I5lR6TDdWStsCgPyPPStlTCqBAPSVnTHAGXOoN-XKTM95jLmEb8aIpGH1rY9hNODRjcDn5uIYhuGa27rvdhWnX-JQbd5fTVKthnKOdlsbOcwzOLiFN5Tl54m0s-OLhPSffPrz_ev2pvf388eb66rZ1XIqlVYNGpzqkFJntrFJCKjkw7zkgV4qqYeuEF5yzHngvJG699OBZ7zroPLXsnLw76s7rdsTB4bRkG82cw2jzT5NsMH__TOHO7NK90ZTqrpdV4M2DQE4_ViyLGUNxGOtFmNZiOik6yjoKoqL0iFZHSsnoT2OAmkMU5uC7OfhujlHUlld_rndq-O19BS6OQEiz2ac1T9Wt_-m9_ge-H0fDwGhDtajxmnnw7BfkzKFB</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Szabo, Emily</creator><creator>Hess-Dunning, Allison</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4060-1145</orcidid><orcidid>https://orcid.org/0000-0003-3976-4270</orcidid></search><sort><creationdate>20210901</creationdate><title>Irreversible, self-aligned microfluidic packaging for chronic implant applications</title><author>Szabo, Emily ; Hess-Dunning, Allison</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-8d9ec82e00e3a2a885686d3ff41e48808dbc5f5443714756ebf6f1f37c212f0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>connector</topic><topic>microfluidic</topic><topic>neural interfaces</topic><topic>packaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szabo, Emily</creatorcontrib><creatorcontrib>Hess-Dunning, Allison</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of micromechanics and microengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szabo, Emily</au><au>Hess-Dunning, Allison</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Irreversible, self-aligned microfluidic packaging for chronic implant applications</atitle><jtitle>Journal of micromechanics and microengineering</jtitle><stitle>JMM</stitle><addtitle>J. Micromech. Microeng</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>31</volume><issue>9</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0960-1317</issn><eissn>1361-6439</eissn><coden>JMMIEZ</coden><abstract>Packaging is an often overlooked component in microfluidic devices for biomedical implant applications. Robust and reliable connectors to interface microscale and macroscale features are especially critical for chronic implant applications. Existing microfluidic packaging methods are incompatible with emerging polymeric materials designed to enhance device integration with the surrounding tissue. A microfluidic connector scheme was developed to promote compatibility with novel materials and implant applications. The connectors and an adhesive wax were printed on a scaffold via additive manufacturing processes. The low-temperature packaging process entailed bonding the connector to a polymer nanocomposite-based intracortical microfluidic probe using an adhesive wax. The robustness of the packaging was assessed by measuring the tensile and shear bond strengths of the connector-adhesive wax-polymer film interface. After soak testing for 4 weeks, the bond strength continued to exceed the force required to infuse fluids through the microfluidic channel. Further, the shear bond strength exceeded typical probe insertion forces by at least 10-fold. These results support the use of the connector and thermal bonding method as a viable option for chronic implant applications.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>35431469</pmid><doi>10.1088/1361-6439/ac1994</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4060-1145</orcidid><orcidid>https://orcid.org/0000-0003-3976-4270</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-1317
ispartof Journal of micromechanics and microengineering, 2021-09, Vol.31 (9), p.1-10
issn 0960-1317
1361-6439
language eng
recordid cdi_proquest_miscellaneous_2652032015
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects connector
microfluidic
neural interfaces
packaging
title Irreversible, self-aligned microfluidic packaging for chronic implant applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Irreversible,%20self-aligned%20microfluidic%20packaging%20for%20chronic%20implant%20applications&rft.jtitle=Journal%20of%20micromechanics%20and%20microengineering&rft.au=Szabo,%20Emily&rft.date=2021-09-01&rft.volume=31&rft.issue=9&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0960-1317&rft.eissn=1361-6439&rft.coden=JMMIEZ&rft_id=info:doi/10.1088/1361-6439/ac1994&rft_dat=%3Cproquest_iop_j%3E2652032015%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652032015&rft_id=info:pmid/35431469&rfr_iscdi=true