External selective orthogonalization for the Lanczos algorithm in distributed memory environments

The k-step explicit restart Lanczos algorithm, LExpRes, for the computation of a few of the extreme eigenpairs of large, usually sparse, symmetric matrices, computes one eigenpair at a time using a deflation technique in which each Lanczos vector generated is orthogonalized against all previously co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Parallel computing 2001-06, Vol.27 (7), p.913-923
Hauptverfasser: Cooper, A, Szularz, M, Weston, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 923
container_issue 7
container_start_page 913
container_title Parallel computing
container_volume 27
creator Cooper, A
Szularz, M
Weston, J
description The k-step explicit restart Lanczos algorithm, LExpRes, for the computation of a few of the extreme eigenpairs of large, usually sparse, symmetric matrices, computes one eigenpair at a time using a deflation technique in which each Lanczos vector generated is orthogonalized against all previously converged eigenvectors. The computation of the inner products associated with this external orthogonalization often creates a bottleneck in parallel distributed memory environments. In this paper methods are proposed which significantly reduce this computational overhead in LExpRes, thereby effectively improving its efficiency. The performances of these methods on the Cray-T3D and the Cray-T3E are assessed and critically compared with that of the original algorithm.
doi_str_mv 10.1016/S0167-8191(01)00074-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26518419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167819101000746</els_id><sourcerecordid>26518419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-422180aacfca7860a970c27a97230e4dde6adddeb49e34daad9eb4941105b0ce3</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKsfQchJ9LCa7KbJ7klE6h8oeFDPIU1m28huUpO02H56s1a8CsO8YXhvYH4InVNyTQnlN6-5iaKmDb0k9IoQIljBD9CI1qIsRFXxQzT6sxyjkxg_somzmoyQmn4lCE51OEIHOtkNYB_S0i98XtqdStY73PqA0xLwTDm98xGrbuGDTcseW4eNjSnY-TqBwT30PmwxuI0N3vXgUjxFR63qIpz96hi9P0zf7p-K2cvj8_3drNBlzVPBypLWRCndaiVqTlQjiC5FlrIiwIwBrkzuc9ZAxYxSphlmRimZzImGaowu9ndXwX-uISbZ26ih65QDv46y5BNaM9pk42Rv1MHHGKCVq2B7FbaSEjkAlT9A5UBLklwDUMlz7nafg_zFxkKQUVtwGowNmZw03v5z4Ru2hYCn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26518419</pqid></control><display><type>article</type><title>External selective orthogonalization for the Lanczos algorithm in distributed memory environments</title><source>Elsevier ScienceDirect Journals</source><creator>Cooper, A ; Szularz, M ; Weston, J</creator><creatorcontrib>Cooper, A ; Szularz, M ; Weston, J</creatorcontrib><description>The k-step explicit restart Lanczos algorithm, LExpRes, for the computation of a few of the extreme eigenpairs of large, usually sparse, symmetric matrices, computes one eigenpair at a time using a deflation technique in which each Lanczos vector generated is orthogonalized against all previously converged eigenvectors. The computation of the inner products associated with this external orthogonalization often creates a bottleneck in parallel distributed memory environments. In this paper methods are proposed which significantly reduce this computational overhead in LExpRes, thereby effectively improving its efficiency. The performances of these methods on the Cray-T3D and the Cray-T3E are assessed and critically compared with that of the original algorithm.</description><identifier>ISSN: 0167-8191</identifier><identifier>EISSN: 1872-7336</identifier><identifier>DOI: 10.1016/S0167-8191(01)00074-6</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Deflation ; Lanczos algorithm ; MPP ; Reorthogonalization ; Restarting</subject><ispartof>Parallel computing, 2001-06, Vol.27 (7), p.913-923</ispartof><rights>2001 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-422180aacfca7860a970c27a97230e4dde6adddeb49e34daad9eb4941105b0ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167819101000746$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Cooper, A</creatorcontrib><creatorcontrib>Szularz, M</creatorcontrib><creatorcontrib>Weston, J</creatorcontrib><title>External selective orthogonalization for the Lanczos algorithm in distributed memory environments</title><title>Parallel computing</title><description>The k-step explicit restart Lanczos algorithm, LExpRes, for the computation of a few of the extreme eigenpairs of large, usually sparse, symmetric matrices, computes one eigenpair at a time using a deflation technique in which each Lanczos vector generated is orthogonalized against all previously converged eigenvectors. The computation of the inner products associated with this external orthogonalization often creates a bottleneck in parallel distributed memory environments. In this paper methods are proposed which significantly reduce this computational overhead in LExpRes, thereby effectively improving its efficiency. The performances of these methods on the Cray-T3D and the Cray-T3E are assessed and critically compared with that of the original algorithm.</description><subject>Deflation</subject><subject>Lanczos algorithm</subject><subject>MPP</subject><subject>Reorthogonalization</subject><subject>Restarting</subject><issn>0167-8191</issn><issn>1872-7336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKsfQchJ9LCa7KbJ7klE6h8oeFDPIU1m28huUpO02H56s1a8CsO8YXhvYH4InVNyTQnlN6-5iaKmDb0k9IoQIljBD9CI1qIsRFXxQzT6sxyjkxg_somzmoyQmn4lCE51OEIHOtkNYB_S0i98XtqdStY73PqA0xLwTDm98xGrbuGDTcseW4eNjSnY-TqBwT30PmwxuI0N3vXgUjxFR63qIpz96hi9P0zf7p-K2cvj8_3drNBlzVPBypLWRCndaiVqTlQjiC5FlrIiwIwBrkzuc9ZAxYxSphlmRimZzImGaowu9ndXwX-uISbZ26ih65QDv46y5BNaM9pk42Rv1MHHGKCVq2B7FbaSEjkAlT9A5UBLklwDUMlz7nafg_zFxkKQUVtwGowNmZw03v5z4Ru2hYCn</recordid><startdate>20010601</startdate><enddate>20010601</enddate><creator>Cooper, A</creator><creator>Szularz, M</creator><creator>Weston, J</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20010601</creationdate><title>External selective orthogonalization for the Lanczos algorithm in distributed memory environments</title><author>Cooper, A ; Szularz, M ; Weston, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-422180aacfca7860a970c27a97230e4dde6adddeb49e34daad9eb4941105b0ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Deflation</topic><topic>Lanczos algorithm</topic><topic>MPP</topic><topic>Reorthogonalization</topic><topic>Restarting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooper, A</creatorcontrib><creatorcontrib>Szularz, M</creatorcontrib><creatorcontrib>Weston, J</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Parallel computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooper, A</au><au>Szularz, M</au><au>Weston, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>External selective orthogonalization for the Lanczos algorithm in distributed memory environments</atitle><jtitle>Parallel computing</jtitle><date>2001-06-01</date><risdate>2001</risdate><volume>27</volume><issue>7</issue><spage>913</spage><epage>923</epage><pages>913-923</pages><issn>0167-8191</issn><eissn>1872-7336</eissn><abstract>The k-step explicit restart Lanczos algorithm, LExpRes, for the computation of a few of the extreme eigenpairs of large, usually sparse, symmetric matrices, computes one eigenpair at a time using a deflation technique in which each Lanczos vector generated is orthogonalized against all previously converged eigenvectors. The computation of the inner products associated with this external orthogonalization often creates a bottleneck in parallel distributed memory environments. In this paper methods are proposed which significantly reduce this computational overhead in LExpRes, thereby effectively improving its efficiency. The performances of these methods on the Cray-T3D and the Cray-T3E are assessed and critically compared with that of the original algorithm.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0167-8191(01)00074-6</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-8191
ispartof Parallel computing, 2001-06, Vol.27 (7), p.913-923
issn 0167-8191
1872-7336
language eng
recordid cdi_proquest_miscellaneous_26518419
source Elsevier ScienceDirect Journals
subjects Deflation
Lanczos algorithm
MPP
Reorthogonalization
Restarting
title External selective orthogonalization for the Lanczos algorithm in distributed memory environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=External%20selective%20orthogonalization%20for%20the%20Lanczos%20algorithm%20in%20distributed%20memory%20environments&rft.jtitle=Parallel%20computing&rft.au=Cooper,%20A&rft.date=2001-06-01&rft.volume=27&rft.issue=7&rft.spage=913&rft.epage=923&rft.pages=913-923&rft.issn=0167-8191&rft.eissn=1872-7336&rft_id=info:doi/10.1016/S0167-8191(01)00074-6&rft_dat=%3Cproquest_cross%3E26518419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26518419&rft_id=info:pmid/&rft_els_id=S0167819101000746&rfr_iscdi=true