Cell Membrane-Camouflaged Nanocarriers with Biomimetic Deformability of Erythrocytes for Ultralong Circulation and Enhanced Cancer Therapy
Despite considerable advancements in cell membrane-camouflaged nanocarriers to leverage natural cell functions, artificial nanocarriers that can accurately mimic both the biological and physical properties of cells are urgently needed. Herein, inspired by the important effect of the stiffness and de...
Gespeichert in:
Veröffentlicht in: | ACS nano 2022-04, Vol.16 (4), p.6527-6540 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6540 |
---|---|
container_issue | 4 |
container_start_page | 6527 |
container_title | ACS nano |
container_volume | 16 |
creator | Miao, Yunqiu Yang, Yuting Guo, Linmiao Chen, Mingshu Zhou, Xin Zhao, Yuge Nie, Di Gan, Yong Zhang, Xinxin |
description | Despite considerable advancements in cell membrane-camouflaged nanocarriers to leverage natural cell functions, artificial nanocarriers that can accurately mimic both the biological and physical properties of cells are urgently needed. Herein, inspired by the important effect of the stiffness and deformability of natural red blood cells (RBCs) on their life span and flowing through narrow vessels, we report the construction of RBC membrane-camouflaged nanocarriers that can mimic RBCs at different life stages and study how the deformability of RBC-derived nanocarriers affects their biological behaviors. RBC membrane-coated elastic poly(ethylene glycol) diacrylate hydrogel nanoparticles (RBC-ENPs) simulating dynamic RBCs exhibited high immunocompatibility with minimum immunoglobulin adsorption in the surface protein corona, resulting in reduced opsonization in macrophages and ultralong circulation. Furthermore, RBC-ENPs can deform like RBCs and achieve excellent diffusion in tumor extracellular matrix, leading to improved multicellular spheroid penetration and tumor tissue accumulation. In mouse cancer models, doxorubicin-loaded RBC-ENPs demonstrated superior antitumor efficacy to the first-line chemotherapeutic drug PEGylated doxorubicin liposomes. Our work highlights that tuning the physical properties of cell membrane-derived nanocarriers may offer an alternative approach for the bionic design of nanomedicines in the future. |
doi_str_mv | 10.1021/acsnano.2c00893 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2651693559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2651693559</sourcerecordid><originalsourceid>FETCH-LOGICAL-a263t-4bebd9f222ecdf3400dcd2e6bf3eeade641a7a8b1818ef4698f5a155c2fbd7f53</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhS0EoqVw5oZ8REJpbSf2JkcIC1Qq7aWVuEUTe9x1ldiL7QjlL_CrcbVLbz2Npfnmzfg9Qt5zds6Z4BegkwcfzoVmrO3qF-SUd7WqWKt-vXx6S35C3qT0wJjctBv1mpzUshGqZuyU_O1xmuhPnMcIHqse5rDYCe7R0OsirCFGhzHRPy7v6BcXZjdjdpp-RRviDKObXF5psHQb17yLQa8ZEy09ejflCFPw97R3US8TZBc8BW_o1u_A67KhfyyR3u4wwn59S15ZmBK-O9Yzcvdte9v_qK5uvl_2n68qKDfnqhlxNJ0VQqA2tm4YM9oIVKOtEcGgajhsoB15y1u0jepaK4FLqYUdzcbK-ox8POjuY_i9YMrD7JIuNhQDwpIGoSRXXS1lV9CLA6pjSCmiHfbRzRDXgbPhMYDhGMBwDKBMfDiKL-OM5on_73gBPh2AMjk8hCX68tdn5f4BePWVqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2651693559</pqid></control><display><type>article</type><title>Cell Membrane-Camouflaged Nanocarriers with Biomimetic Deformability of Erythrocytes for Ultralong Circulation and Enhanced Cancer Therapy</title><source>American Chemical Society Journals</source><creator>Miao, Yunqiu ; Yang, Yuting ; Guo, Linmiao ; Chen, Mingshu ; Zhou, Xin ; Zhao, Yuge ; Nie, Di ; Gan, Yong ; Zhang, Xinxin</creator><creatorcontrib>Miao, Yunqiu ; Yang, Yuting ; Guo, Linmiao ; Chen, Mingshu ; Zhou, Xin ; Zhao, Yuge ; Nie, Di ; Gan, Yong ; Zhang, Xinxin</creatorcontrib><description>Despite considerable advancements in cell membrane-camouflaged nanocarriers to leverage natural cell functions, artificial nanocarriers that can accurately mimic both the biological and physical properties of cells are urgently needed. Herein, inspired by the important effect of the stiffness and deformability of natural red blood cells (RBCs) on their life span and flowing through narrow vessels, we report the construction of RBC membrane-camouflaged nanocarriers that can mimic RBCs at different life stages and study how the deformability of RBC-derived nanocarriers affects their biological behaviors. RBC membrane-coated elastic poly(ethylene glycol) diacrylate hydrogel nanoparticles (RBC-ENPs) simulating dynamic RBCs exhibited high immunocompatibility with minimum immunoglobulin adsorption in the surface protein corona, resulting in reduced opsonization in macrophages and ultralong circulation. Furthermore, RBC-ENPs can deform like RBCs and achieve excellent diffusion in tumor extracellular matrix, leading to improved multicellular spheroid penetration and tumor tissue accumulation. In mouse cancer models, doxorubicin-loaded RBC-ENPs demonstrated superior antitumor efficacy to the first-line chemotherapeutic drug PEGylated doxorubicin liposomes. Our work highlights that tuning the physical properties of cell membrane-derived nanocarriers may offer an alternative approach for the bionic design of nanomedicines in the future.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.2c00893</identifier><identifier>PMID: 35426300</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2022-04, Vol.16 (4), p.6527-6540</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a263t-4bebd9f222ecdf3400dcd2e6bf3eeade641a7a8b1818ef4698f5a155c2fbd7f53</citedby><cites>FETCH-LOGICAL-a263t-4bebd9f222ecdf3400dcd2e6bf3eeade641a7a8b1818ef4698f5a155c2fbd7f53</cites><orcidid>0000-0002-4579-994X ; 0000-0002-1782-1046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.2c00893$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.2c00893$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35426300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miao, Yunqiu</creatorcontrib><creatorcontrib>Yang, Yuting</creatorcontrib><creatorcontrib>Guo, Linmiao</creatorcontrib><creatorcontrib>Chen, Mingshu</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Zhao, Yuge</creatorcontrib><creatorcontrib>Nie, Di</creatorcontrib><creatorcontrib>Gan, Yong</creatorcontrib><creatorcontrib>Zhang, Xinxin</creatorcontrib><title>Cell Membrane-Camouflaged Nanocarriers with Biomimetic Deformability of Erythrocytes for Ultralong Circulation and Enhanced Cancer Therapy</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Despite considerable advancements in cell membrane-camouflaged nanocarriers to leverage natural cell functions, artificial nanocarriers that can accurately mimic both the biological and physical properties of cells are urgently needed. Herein, inspired by the important effect of the stiffness and deformability of natural red blood cells (RBCs) on their life span and flowing through narrow vessels, we report the construction of RBC membrane-camouflaged nanocarriers that can mimic RBCs at different life stages and study how the deformability of RBC-derived nanocarriers affects their biological behaviors. RBC membrane-coated elastic poly(ethylene glycol) diacrylate hydrogel nanoparticles (RBC-ENPs) simulating dynamic RBCs exhibited high immunocompatibility with minimum immunoglobulin adsorption in the surface protein corona, resulting in reduced opsonization in macrophages and ultralong circulation. Furthermore, RBC-ENPs can deform like RBCs and achieve excellent diffusion in tumor extracellular matrix, leading to improved multicellular spheroid penetration and tumor tissue accumulation. In mouse cancer models, doxorubicin-loaded RBC-ENPs demonstrated superior antitumor efficacy to the first-line chemotherapeutic drug PEGylated doxorubicin liposomes. Our work highlights that tuning the physical properties of cell membrane-derived nanocarriers may offer an alternative approach for the bionic design of nanomedicines in the future.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kUFv1DAQhS0EoqVw5oZ8REJpbSf2JkcIC1Qq7aWVuEUTe9x1ldiL7QjlL_CrcbVLbz2Npfnmzfg9Qt5zds6Z4BegkwcfzoVmrO3qF-SUd7WqWKt-vXx6S35C3qT0wJjctBv1mpzUshGqZuyU_O1xmuhPnMcIHqse5rDYCe7R0OsirCFGhzHRPy7v6BcXZjdjdpp-RRviDKObXF5psHQb17yLQa8ZEy09ejflCFPw97R3US8TZBc8BW_o1u_A67KhfyyR3u4wwn59S15ZmBK-O9Yzcvdte9v_qK5uvl_2n68qKDfnqhlxNJ0VQqA2tm4YM9oIVKOtEcGgajhsoB15y1u0jepaK4FLqYUdzcbK-ox8POjuY_i9YMrD7JIuNhQDwpIGoSRXXS1lV9CLA6pjSCmiHfbRzRDXgbPhMYDhGMBwDKBMfDiKL-OM5on_73gBPh2AMjk8hCX68tdn5f4BePWVqA</recordid><startdate>20220426</startdate><enddate>20220426</enddate><creator>Miao, Yunqiu</creator><creator>Yang, Yuting</creator><creator>Guo, Linmiao</creator><creator>Chen, Mingshu</creator><creator>Zhou, Xin</creator><creator>Zhao, Yuge</creator><creator>Nie, Di</creator><creator>Gan, Yong</creator><creator>Zhang, Xinxin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4579-994X</orcidid><orcidid>https://orcid.org/0000-0002-1782-1046</orcidid></search><sort><creationdate>20220426</creationdate><title>Cell Membrane-Camouflaged Nanocarriers with Biomimetic Deformability of Erythrocytes for Ultralong Circulation and Enhanced Cancer Therapy</title><author>Miao, Yunqiu ; Yang, Yuting ; Guo, Linmiao ; Chen, Mingshu ; Zhou, Xin ; Zhao, Yuge ; Nie, Di ; Gan, Yong ; Zhang, Xinxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a263t-4bebd9f222ecdf3400dcd2e6bf3eeade641a7a8b1818ef4698f5a155c2fbd7f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Yunqiu</creatorcontrib><creatorcontrib>Yang, Yuting</creatorcontrib><creatorcontrib>Guo, Linmiao</creatorcontrib><creatorcontrib>Chen, Mingshu</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Zhao, Yuge</creatorcontrib><creatorcontrib>Nie, Di</creatorcontrib><creatorcontrib>Gan, Yong</creatorcontrib><creatorcontrib>Zhang, Xinxin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Yunqiu</au><au>Yang, Yuting</au><au>Guo, Linmiao</au><au>Chen, Mingshu</au><au>Zhou, Xin</au><au>Zhao, Yuge</au><au>Nie, Di</au><au>Gan, Yong</au><au>Zhang, Xinxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell Membrane-Camouflaged Nanocarriers with Biomimetic Deformability of Erythrocytes for Ultralong Circulation and Enhanced Cancer Therapy</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2022-04-26</date><risdate>2022</risdate><volume>16</volume><issue>4</issue><spage>6527</spage><epage>6540</epage><pages>6527-6540</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Despite considerable advancements in cell membrane-camouflaged nanocarriers to leverage natural cell functions, artificial nanocarriers that can accurately mimic both the biological and physical properties of cells are urgently needed. Herein, inspired by the important effect of the stiffness and deformability of natural red blood cells (RBCs) on their life span and flowing through narrow vessels, we report the construction of RBC membrane-camouflaged nanocarriers that can mimic RBCs at different life stages and study how the deformability of RBC-derived nanocarriers affects their biological behaviors. RBC membrane-coated elastic poly(ethylene glycol) diacrylate hydrogel nanoparticles (RBC-ENPs) simulating dynamic RBCs exhibited high immunocompatibility with minimum immunoglobulin adsorption in the surface protein corona, resulting in reduced opsonization in macrophages and ultralong circulation. Furthermore, RBC-ENPs can deform like RBCs and achieve excellent diffusion in tumor extracellular matrix, leading to improved multicellular spheroid penetration and tumor tissue accumulation. In mouse cancer models, doxorubicin-loaded RBC-ENPs demonstrated superior antitumor efficacy to the first-line chemotherapeutic drug PEGylated doxorubicin liposomes. Our work highlights that tuning the physical properties of cell membrane-derived nanocarriers may offer an alternative approach for the bionic design of nanomedicines in the future.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35426300</pmid><doi>10.1021/acsnano.2c00893</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4579-994X</orcidid><orcidid>https://orcid.org/0000-0002-1782-1046</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2022-04, Vol.16 (4), p.6527-6540 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2651693559 |
source | American Chemical Society Journals |
title | Cell Membrane-Camouflaged Nanocarriers with Biomimetic Deformability of Erythrocytes for Ultralong Circulation and Enhanced Cancer Therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A41%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20Membrane-Camouflaged%20Nanocarriers%20with%20Biomimetic%20Deformability%20of%20Erythrocytes%20for%20Ultralong%20Circulation%20and%20Enhanced%20Cancer%20Therapy&rft.jtitle=ACS%20nano&rft.au=Miao,%20Yunqiu&rft.date=2022-04-26&rft.volume=16&rft.issue=4&rft.spage=6527&rft.epage=6540&rft.pages=6527-6540&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.2c00893&rft_dat=%3Cproquest_cross%3E2651693559%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2651693559&rft_id=info:pmid/35426300&rfr_iscdi=true |