Cell Membrane-Camouflaged Nanocarriers with Biomimetic Deformability of Erythrocytes for Ultralong Circulation and Enhanced Cancer Therapy

Despite considerable advancements in cell membrane-camouflaged nanocarriers to leverage natural cell functions, artificial nanocarriers that can accurately mimic both the biological and physical properties of cells are urgently needed. Herein, inspired by the important effect of the stiffness and de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2022-04, Vol.16 (4), p.6527-6540
Hauptverfasser: Miao, Yunqiu, Yang, Yuting, Guo, Linmiao, Chen, Mingshu, Zhou, Xin, Zhao, Yuge, Nie, Di, Gan, Yong, Zhang, Xinxin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6540
container_issue 4
container_start_page 6527
container_title ACS nano
container_volume 16
creator Miao, Yunqiu
Yang, Yuting
Guo, Linmiao
Chen, Mingshu
Zhou, Xin
Zhao, Yuge
Nie, Di
Gan, Yong
Zhang, Xinxin
description Despite considerable advancements in cell membrane-camouflaged nanocarriers to leverage natural cell functions, artificial nanocarriers that can accurately mimic both the biological and physical properties of cells are urgently needed. Herein, inspired by the important effect of the stiffness and deformability of natural red blood cells (RBCs) on their life span and flowing through narrow vessels, we report the construction of RBC membrane-camouflaged nanocarriers that can mimic RBCs at different life stages and study how the deformability of RBC-derived nanocarriers affects their biological behaviors. RBC membrane-coated elastic poly­(ethylene glycol) diacrylate hydrogel nanoparticles (RBC-ENPs) simulating dynamic RBCs exhibited high immunocompatibility with minimum immunoglobulin adsorption in the surface protein corona, resulting in reduced opsonization in macrophages and ultralong circulation. Furthermore, RBC-ENPs can deform like RBCs and achieve excellent diffusion in tumor extracellular matrix, leading to improved multicellular spheroid penetration and tumor tissue accumulation. In mouse cancer models, doxorubicin-loaded RBC-ENPs demonstrated superior antitumor efficacy to the first-line chemotherapeutic drug PEGylated doxorubicin liposomes. Our work highlights that tuning the physical properties of cell membrane-derived nanocarriers may offer an alternative approach for the bionic design of nanomedicines in the future.
doi_str_mv 10.1021/acsnano.2c00893
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2651693559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2651693559</sourcerecordid><originalsourceid>FETCH-LOGICAL-a263t-4bebd9f222ecdf3400dcd2e6bf3eeade641a7a8b1818ef4698f5a155c2fbd7f53</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhS0EoqVw5oZ8REJpbSf2JkcIC1Qq7aWVuEUTe9x1ldiL7QjlL_CrcbVLbz2Npfnmzfg9Qt5zds6Z4BegkwcfzoVmrO3qF-SUd7WqWKt-vXx6S35C3qT0wJjctBv1mpzUshGqZuyU_O1xmuhPnMcIHqse5rDYCe7R0OsirCFGhzHRPy7v6BcXZjdjdpp-RRviDKObXF5psHQb17yLQa8ZEy09ejflCFPw97R3US8TZBc8BW_o1u_A67KhfyyR3u4wwn59S15ZmBK-O9Yzcvdte9v_qK5uvl_2n68qKDfnqhlxNJ0VQqA2tm4YM9oIVKOtEcGgajhsoB15y1u0jepaK4FLqYUdzcbK-ox8POjuY_i9YMrD7JIuNhQDwpIGoSRXXS1lV9CLA6pjSCmiHfbRzRDXgbPhMYDhGMBwDKBMfDiKL-OM5on_73gBPh2AMjk8hCX68tdn5f4BePWVqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2651693559</pqid></control><display><type>article</type><title>Cell Membrane-Camouflaged Nanocarriers with Biomimetic Deformability of Erythrocytes for Ultralong Circulation and Enhanced Cancer Therapy</title><source>American Chemical Society Journals</source><creator>Miao, Yunqiu ; Yang, Yuting ; Guo, Linmiao ; Chen, Mingshu ; Zhou, Xin ; Zhao, Yuge ; Nie, Di ; Gan, Yong ; Zhang, Xinxin</creator><creatorcontrib>Miao, Yunqiu ; Yang, Yuting ; Guo, Linmiao ; Chen, Mingshu ; Zhou, Xin ; Zhao, Yuge ; Nie, Di ; Gan, Yong ; Zhang, Xinxin</creatorcontrib><description>Despite considerable advancements in cell membrane-camouflaged nanocarriers to leverage natural cell functions, artificial nanocarriers that can accurately mimic both the biological and physical properties of cells are urgently needed. Herein, inspired by the important effect of the stiffness and deformability of natural red blood cells (RBCs) on their life span and flowing through narrow vessels, we report the construction of RBC membrane-camouflaged nanocarriers that can mimic RBCs at different life stages and study how the deformability of RBC-derived nanocarriers affects their biological behaviors. RBC membrane-coated elastic poly­(ethylene glycol) diacrylate hydrogel nanoparticles (RBC-ENPs) simulating dynamic RBCs exhibited high immunocompatibility with minimum immunoglobulin adsorption in the surface protein corona, resulting in reduced opsonization in macrophages and ultralong circulation. Furthermore, RBC-ENPs can deform like RBCs and achieve excellent diffusion in tumor extracellular matrix, leading to improved multicellular spheroid penetration and tumor tissue accumulation. In mouse cancer models, doxorubicin-loaded RBC-ENPs demonstrated superior antitumor efficacy to the first-line chemotherapeutic drug PEGylated doxorubicin liposomes. Our work highlights that tuning the physical properties of cell membrane-derived nanocarriers may offer an alternative approach for the bionic design of nanomedicines in the future.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.2c00893</identifier><identifier>PMID: 35426300</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2022-04, Vol.16 (4), p.6527-6540</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a263t-4bebd9f222ecdf3400dcd2e6bf3eeade641a7a8b1818ef4698f5a155c2fbd7f53</citedby><cites>FETCH-LOGICAL-a263t-4bebd9f222ecdf3400dcd2e6bf3eeade641a7a8b1818ef4698f5a155c2fbd7f53</cites><orcidid>0000-0002-4579-994X ; 0000-0002-1782-1046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.2c00893$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.2c00893$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35426300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miao, Yunqiu</creatorcontrib><creatorcontrib>Yang, Yuting</creatorcontrib><creatorcontrib>Guo, Linmiao</creatorcontrib><creatorcontrib>Chen, Mingshu</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Zhao, Yuge</creatorcontrib><creatorcontrib>Nie, Di</creatorcontrib><creatorcontrib>Gan, Yong</creatorcontrib><creatorcontrib>Zhang, Xinxin</creatorcontrib><title>Cell Membrane-Camouflaged Nanocarriers with Biomimetic Deformability of Erythrocytes for Ultralong Circulation and Enhanced Cancer Therapy</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Despite considerable advancements in cell membrane-camouflaged nanocarriers to leverage natural cell functions, artificial nanocarriers that can accurately mimic both the biological and physical properties of cells are urgently needed. Herein, inspired by the important effect of the stiffness and deformability of natural red blood cells (RBCs) on their life span and flowing through narrow vessels, we report the construction of RBC membrane-camouflaged nanocarriers that can mimic RBCs at different life stages and study how the deformability of RBC-derived nanocarriers affects their biological behaviors. RBC membrane-coated elastic poly­(ethylene glycol) diacrylate hydrogel nanoparticles (RBC-ENPs) simulating dynamic RBCs exhibited high immunocompatibility with minimum immunoglobulin adsorption in the surface protein corona, resulting in reduced opsonization in macrophages and ultralong circulation. Furthermore, RBC-ENPs can deform like RBCs and achieve excellent diffusion in tumor extracellular matrix, leading to improved multicellular spheroid penetration and tumor tissue accumulation. In mouse cancer models, doxorubicin-loaded RBC-ENPs demonstrated superior antitumor efficacy to the first-line chemotherapeutic drug PEGylated doxorubicin liposomes. Our work highlights that tuning the physical properties of cell membrane-derived nanocarriers may offer an alternative approach for the bionic design of nanomedicines in the future.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kUFv1DAQhS0EoqVw5oZ8REJpbSf2JkcIC1Qq7aWVuEUTe9x1ldiL7QjlL_CrcbVLbz2Npfnmzfg9Qt5zds6Z4BegkwcfzoVmrO3qF-SUd7WqWKt-vXx6S35C3qT0wJjctBv1mpzUshGqZuyU_O1xmuhPnMcIHqse5rDYCe7R0OsirCFGhzHRPy7v6BcXZjdjdpp-RRviDKObXF5psHQb17yLQa8ZEy09ejflCFPw97R3US8TZBc8BW_o1u_A67KhfyyR3u4wwn59S15ZmBK-O9Yzcvdte9v_qK5uvl_2n68qKDfnqhlxNJ0VQqA2tm4YM9oIVKOtEcGgajhsoB15y1u0jepaK4FLqYUdzcbK-ox8POjuY_i9YMrD7JIuNhQDwpIGoSRXXS1lV9CLA6pjSCmiHfbRzRDXgbPhMYDhGMBwDKBMfDiKL-OM5on_73gBPh2AMjk8hCX68tdn5f4BePWVqA</recordid><startdate>20220426</startdate><enddate>20220426</enddate><creator>Miao, Yunqiu</creator><creator>Yang, Yuting</creator><creator>Guo, Linmiao</creator><creator>Chen, Mingshu</creator><creator>Zhou, Xin</creator><creator>Zhao, Yuge</creator><creator>Nie, Di</creator><creator>Gan, Yong</creator><creator>Zhang, Xinxin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4579-994X</orcidid><orcidid>https://orcid.org/0000-0002-1782-1046</orcidid></search><sort><creationdate>20220426</creationdate><title>Cell Membrane-Camouflaged Nanocarriers with Biomimetic Deformability of Erythrocytes for Ultralong Circulation and Enhanced Cancer Therapy</title><author>Miao, Yunqiu ; Yang, Yuting ; Guo, Linmiao ; Chen, Mingshu ; Zhou, Xin ; Zhao, Yuge ; Nie, Di ; Gan, Yong ; Zhang, Xinxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a263t-4bebd9f222ecdf3400dcd2e6bf3eeade641a7a8b1818ef4698f5a155c2fbd7f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Yunqiu</creatorcontrib><creatorcontrib>Yang, Yuting</creatorcontrib><creatorcontrib>Guo, Linmiao</creatorcontrib><creatorcontrib>Chen, Mingshu</creatorcontrib><creatorcontrib>Zhou, Xin</creatorcontrib><creatorcontrib>Zhao, Yuge</creatorcontrib><creatorcontrib>Nie, Di</creatorcontrib><creatorcontrib>Gan, Yong</creatorcontrib><creatorcontrib>Zhang, Xinxin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Yunqiu</au><au>Yang, Yuting</au><au>Guo, Linmiao</au><au>Chen, Mingshu</au><au>Zhou, Xin</au><au>Zhao, Yuge</au><au>Nie, Di</au><au>Gan, Yong</au><au>Zhang, Xinxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell Membrane-Camouflaged Nanocarriers with Biomimetic Deformability of Erythrocytes for Ultralong Circulation and Enhanced Cancer Therapy</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2022-04-26</date><risdate>2022</risdate><volume>16</volume><issue>4</issue><spage>6527</spage><epage>6540</epage><pages>6527-6540</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Despite considerable advancements in cell membrane-camouflaged nanocarriers to leverage natural cell functions, artificial nanocarriers that can accurately mimic both the biological and physical properties of cells are urgently needed. Herein, inspired by the important effect of the stiffness and deformability of natural red blood cells (RBCs) on their life span and flowing through narrow vessels, we report the construction of RBC membrane-camouflaged nanocarriers that can mimic RBCs at different life stages and study how the deformability of RBC-derived nanocarriers affects their biological behaviors. RBC membrane-coated elastic poly­(ethylene glycol) diacrylate hydrogel nanoparticles (RBC-ENPs) simulating dynamic RBCs exhibited high immunocompatibility with minimum immunoglobulin adsorption in the surface protein corona, resulting in reduced opsonization in macrophages and ultralong circulation. Furthermore, RBC-ENPs can deform like RBCs and achieve excellent diffusion in tumor extracellular matrix, leading to improved multicellular spheroid penetration and tumor tissue accumulation. In mouse cancer models, doxorubicin-loaded RBC-ENPs demonstrated superior antitumor efficacy to the first-line chemotherapeutic drug PEGylated doxorubicin liposomes. Our work highlights that tuning the physical properties of cell membrane-derived nanocarriers may offer an alternative approach for the bionic design of nanomedicines in the future.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35426300</pmid><doi>10.1021/acsnano.2c00893</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4579-994X</orcidid><orcidid>https://orcid.org/0000-0002-1782-1046</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2022-04, Vol.16 (4), p.6527-6540
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2651693559
source American Chemical Society Journals
title Cell Membrane-Camouflaged Nanocarriers with Biomimetic Deformability of Erythrocytes for Ultralong Circulation and Enhanced Cancer Therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A41%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20Membrane-Camouflaged%20Nanocarriers%20with%20Biomimetic%20Deformability%20of%20Erythrocytes%20for%20Ultralong%20Circulation%20and%20Enhanced%20Cancer%20Therapy&rft.jtitle=ACS%20nano&rft.au=Miao,%20Yunqiu&rft.date=2022-04-26&rft.volume=16&rft.issue=4&rft.spage=6527&rft.epage=6540&rft.pages=6527-6540&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.2c00893&rft_dat=%3Cproquest_cross%3E2651693559%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2651693559&rft_id=info:pmid/35426300&rfr_iscdi=true