Identification in the presence of classes of unmodeled dynamics and noise
Identification involves obtaining a model from an a priori chosen model class(es) using finite corrupted data. The corruption may be due to several reasons ranging from noise to unmodeled dynamics, since the real system may not belong to the model class. Two popular approaches-probabilistic and set-...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 1997-12, Vol.42 (12), p.1620-1635 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1635 |
---|---|
container_issue | 12 |
container_start_page | 1620 |
container_title | IEEE transactions on automatic control |
container_volume | 42 |
creator | Venkatesh, S.R. Dahleh, M.A. |
description | Identification involves obtaining a model from an a priori chosen model class(es) using finite corrupted data. The corruption may be due to several reasons ranging from noise to unmodeled dynamics, since the real system may not belong to the model class. Two popular approaches-probabilistic and set-membership identification-deal with this problem by imposing temporal constraints on the noise sample paths. We differentiate between the two sources of error by imposing different types of constraints on the corruption. If the source of corruption is noise, we model it by imposing temporal constraints on the possible realizations of noise. On the other hand, if it results from unmodeled dynamics informational constraints are imposed. Contrary to probabilistic identification where the parameters of the identified model converge to the true parameters in the presence of noise, current results in set-membership identification do not have this convergence property. Our approach leads to bridging this gap between probabilistic and set-membership identification when the source of corruption is noise. For the case when both unmodeled dynamics and noise are present, we derive consistency results for the case when the unmodeled dynamics can be described either by a linear time-invariant system or by a static nonlinearity. |
doi_str_mv | 10.1109/9.650013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_26516139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>650013</ieee_id><sourcerecordid>28906383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-5368879d9c0fc09fb51340fe9750e9dc8fb9b772996953f50e1a43fa65d924113</originalsourceid><addsrcrecordid>eNqN0E1LAzEQBuAgCtYqePaUg4iXrfnYZDNHET8KBS96XtJkgpHdbN1sD_33btnSq54ymXl4B4aQa84WnDN4gIVWjHF5QmZcKVMIJeQpmY0tU4Aw-pxc5Pw9fnVZ8hlZLj2mIYbo7BC7RGOiwxfSTY8Zk0PaBeoamzPmfblNbeexQU_9Ltk2ukxt8jR1MeMlOQu2yXh1eOfk8-X54-mtWL2_Lp8eV4WTWg-FktqYCjw4FhyDsFZcliwgVIoheGfCGtZVJQA0KBnGJrelDFYrD6LkXM7J3ZS76bufLeahbmN22DQ2YbfNtTDAtDTyH1AozcH8DbXimksY4f0EXd_l3GOoN31sbb-rOav316-hnq4_0ttDps3ONqG3ycV89IJV4-I9u5lYRMTj9JDxC-Ieij0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26516139</pqid></control><display><type>article</type><title>Identification in the presence of classes of unmodeled dynamics and noise</title><source>IEEE Electronic Library (IEL)</source><creator>Venkatesh, S.R. ; Dahleh, M.A.</creator><creatorcontrib>Venkatesh, S.R. ; Dahleh, M.A.</creatorcontrib><description>Identification involves obtaining a model from an a priori chosen model class(es) using finite corrupted data. The corruption may be due to several reasons ranging from noise to unmodeled dynamics, since the real system may not belong to the model class. Two popular approaches-probabilistic and set-membership identification-deal with this problem by imposing temporal constraints on the noise sample paths. We differentiate between the two sources of error by imposing different types of constraints on the corruption. If the source of corruption is noise, we model it by imposing temporal constraints on the possible realizations of noise. On the other hand, if it results from unmodeled dynamics informational constraints are imposed. Contrary to probabilistic identification where the parameters of the identified model converge to the true parameters in the presence of noise, current results in set-membership identification do not have this convergence property. Our approach leads to bridging this gap between probabilistic and set-membership identification when the source of corruption is noise. For the case when both unmodeled dynamics and noise are present, we derive consistency results for the case when the unmodeled dynamics can be described either by a linear time-invariant system or by a static nonlinearity.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.650013</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control theory. Systems ; Convergence ; Error correction ; Exact sciences and technology ; Modelling and identification ; Nonlinear dynamical systems ; Robust control ; Sampling methods ; Stochastic resonance ; Stress control ; Technological innovation ; Uncertainty</subject><ispartof>IEEE transactions on automatic control, 1997-12, Vol.42 (12), p.1620-1635</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-5368879d9c0fc09fb51340fe9750e9dc8fb9b772996953f50e1a43fa65d924113</citedby><cites>FETCH-LOGICAL-c366t-5368879d9c0fc09fb51340fe9750e9dc8fb9b772996953f50e1a43fa65d924113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/650013$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27906,27907,54740</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/650013$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2079833$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Venkatesh, S.R.</creatorcontrib><creatorcontrib>Dahleh, M.A.</creatorcontrib><title>Identification in the presence of classes of unmodeled dynamics and noise</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Identification involves obtaining a model from an a priori chosen model class(es) using finite corrupted data. The corruption may be due to several reasons ranging from noise to unmodeled dynamics, since the real system may not belong to the model class. Two popular approaches-probabilistic and set-membership identification-deal with this problem by imposing temporal constraints on the noise sample paths. We differentiate between the two sources of error by imposing different types of constraints on the corruption. If the source of corruption is noise, we model it by imposing temporal constraints on the possible realizations of noise. On the other hand, if it results from unmodeled dynamics informational constraints are imposed. Contrary to probabilistic identification where the parameters of the identified model converge to the true parameters in the presence of noise, current results in set-membership identification do not have this convergence property. Our approach leads to bridging this gap between probabilistic and set-membership identification when the source of corruption is noise. For the case when both unmodeled dynamics and noise are present, we derive consistency results for the case when the unmodeled dynamics can be described either by a linear time-invariant system or by a static nonlinearity.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Convergence</subject><subject>Error correction</subject><subject>Exact sciences and technology</subject><subject>Modelling and identification</subject><subject>Nonlinear dynamical systems</subject><subject>Robust control</subject><subject>Sampling methods</subject><subject>Stochastic resonance</subject><subject>Stress control</subject><subject>Technological innovation</subject><subject>Uncertainty</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqN0E1LAzEQBuAgCtYqePaUg4iXrfnYZDNHET8KBS96XtJkgpHdbN1sD_33btnSq54ymXl4B4aQa84WnDN4gIVWjHF5QmZcKVMIJeQpmY0tU4Aw-pxc5Pw9fnVZ8hlZLj2mIYbo7BC7RGOiwxfSTY8Zk0PaBeoamzPmfblNbeexQU_9Ltk2ukxt8jR1MeMlOQu2yXh1eOfk8-X54-mtWL2_Lp8eV4WTWg-FktqYCjw4FhyDsFZcliwgVIoheGfCGtZVJQA0KBnGJrelDFYrD6LkXM7J3ZS76bufLeahbmN22DQ2YbfNtTDAtDTyH1AozcH8DbXimksY4f0EXd_l3GOoN31sbb-rOav316-hnq4_0ttDps3ONqG3ycV89IJV4-I9u5lYRMTj9JDxC-Ieij0</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>Venkatesh, S.R.</creator><creator>Dahleh, M.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19971201</creationdate><title>Identification in the presence of classes of unmodeled dynamics and noise</title><author>Venkatesh, S.R. ; Dahleh, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-5368879d9c0fc09fb51340fe9750e9dc8fb9b772996953f50e1a43fa65d924113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Convergence</topic><topic>Error correction</topic><topic>Exact sciences and technology</topic><topic>Modelling and identification</topic><topic>Nonlinear dynamical systems</topic><topic>Robust control</topic><topic>Sampling methods</topic><topic>Stochastic resonance</topic><topic>Stress control</topic><topic>Technological innovation</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venkatesh, S.R.</creatorcontrib><creatorcontrib>Dahleh, M.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Venkatesh, S.R.</au><au>Dahleh, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification in the presence of classes of unmodeled dynamics and noise</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1997-12-01</date><risdate>1997</risdate><volume>42</volume><issue>12</issue><spage>1620</spage><epage>1635</epage><pages>1620-1635</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Identification involves obtaining a model from an a priori chosen model class(es) using finite corrupted data. The corruption may be due to several reasons ranging from noise to unmodeled dynamics, since the real system may not belong to the model class. Two popular approaches-probabilistic and set-membership identification-deal with this problem by imposing temporal constraints on the noise sample paths. We differentiate between the two sources of error by imposing different types of constraints on the corruption. If the source of corruption is noise, we model it by imposing temporal constraints on the possible realizations of noise. On the other hand, if it results from unmodeled dynamics informational constraints are imposed. Contrary to probabilistic identification where the parameters of the identified model converge to the true parameters in the presence of noise, current results in set-membership identification do not have this convergence property. Our approach leads to bridging this gap between probabilistic and set-membership identification when the source of corruption is noise. For the case when both unmodeled dynamics and noise are present, we derive consistency results for the case when the unmodeled dynamics can be described either by a linear time-invariant system or by a static nonlinearity.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/9.650013</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 1997-12, Vol.42 (12), p.1620-1635 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_miscellaneous_26516139 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Computer science control theory systems Control theory. Systems Convergence Error correction Exact sciences and technology Modelling and identification Nonlinear dynamical systems Robust control Sampling methods Stochastic resonance Stress control Technological innovation Uncertainty |
title | Identification in the presence of classes of unmodeled dynamics and noise |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A01%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20in%20the%20presence%20of%20classes%20of%20unmodeled%20dynamics%20and%20noise&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Venkatesh,%20S.R.&rft.date=1997-12-01&rft.volume=42&rft.issue=12&rft.spage=1620&rft.epage=1635&rft.pages=1620-1635&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.650013&rft_dat=%3Cproquest_RIE%3E28906383%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26516139&rft_id=info:pmid/&rft_ieee_id=650013&rfr_iscdi=true |