The Role of Radical Bridges in Polynuclear Single‐Molecule Magnets

Employing radical bridges between anisotropic metal ions has been a viable route to achieve high‐performance single‐molecule magnets (SMMs). While the bridges have been mainly considered for their ability to promote exchange interactions, the crystal‐field effect arising from them has not been taken...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2022-05, Vol.28 (30), p.e202200227-n/a
Hauptverfasser: Nguyen, Giang Truong, Ungur, Liviu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 30
container_start_page e202200227
container_title Chemistry : a European journal
container_volume 28
creator Nguyen, Giang Truong
Ungur, Liviu
description Employing radical bridges between anisotropic metal ions has been a viable route to achieve high‐performance single‐molecule magnets (SMMs). While the bridges have been mainly considered for their ability to promote exchange interactions, the crystal‐field effect arising from them has not been taken into account explicitly. This lack of consideration may distort the understanding and limit the development of the entire family. To shed light on this aspect, herein we report a theoretical investigation of a series of N23- ‐radical‐bridged diterbium complexes. It is found that while promoting strong exchange coupling between the terbium ions, the N23- ‐radical induces a crystal field that interferes destructively with that of the outer ligands, and thus reduces the overall SMM behavior. Based on the theoretical results, we conclude that the SMM behavior in this series could be further maximized if the crystal field of the outer ligands is designed to be collinear with that of the radical bridge. This conclusion can be generalized to all exchange‐coupled SMMs. In N23−‐radical‐bridged diterbium complexes, the radical bridge induces crystal‐field and magnetic anisotropy that interferes destructively with that of the outer ligands. The performance of polynuclear exchange‐coupled SMMs may be significantly enhanced if the crystal‐field and magnetic anisotropy induced by the local ligands and the bridging ligands are engineered collinear to each other.
doi_str_mv 10.1002/chem.202200227
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2650254761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2650254761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3037-743f3a42e02fa4af7f474d348015999051eeeb5089dc9ba89db72359824842553</originalsourceid><addsrcrecordid>eNqFkM1OwkAUhSdGI4huXZombtwU57fTWSqimEA0iOvJtL2FkqHFDo1h5yP4jD6JQ0BM3Lg6ucl3Tm4-hM4J7hKM6XU6g0WXYkr9QeUBahNBSchkJA5RGysuw0gw1UInzs0xxipi7Bi1mOBExUq20d1kBsG4shBUeTA2WZEaG9zWRTYFFxRl8FzZddmkFkwdvBTl1MLXx-fI82njOyMzLWHlTtFRbqyDs1120Ot9f9IbhMOnh8fezTBMGWYylJzlzHAKmOaGm1zmXPKM8RgToZTCggBAInCsslQlxkciKRMqpjzmVAjWQVfb3WVdvTXgVnpRuBSsNSVUjdM0EpgKLiPi0cs_6Lxq6tJ_p6mkJIpxTJinulsqrSvnasj1si4Wpl5rgvXGr9741Xu_vnCxm22SBWR7_EeoB9QWeC8srP-Z071Bf_Q7_g0tA4Ti</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721680813</pqid></control><display><type>article</type><title>The Role of Radical Bridges in Polynuclear Single‐Molecule Magnets</title><source>Access via Wiley Online Library</source><creator>Nguyen, Giang Truong ; Ungur, Liviu</creator><creatorcontrib>Nguyen, Giang Truong ; Ungur, Liviu</creatorcontrib><description>Employing radical bridges between anisotropic metal ions has been a viable route to achieve high‐performance single‐molecule magnets (SMMs). While the bridges have been mainly considered for their ability to promote exchange interactions, the crystal‐field effect arising from them has not been taken into account explicitly. This lack of consideration may distort the understanding and limit the development of the entire family. To shed light on this aspect, herein we report a theoretical investigation of a series of N23- ‐radical‐bridged diterbium complexes. It is found that while promoting strong exchange coupling between the terbium ions, the N23- ‐radical induces a crystal field that interferes destructively with that of the outer ligands, and thus reduces the overall SMM behavior. Based on the theoretical results, we conclude that the SMM behavior in this series could be further maximized if the crystal field of the outer ligands is designed to be collinear with that of the radical bridge. This conclusion can be generalized to all exchange‐coupled SMMs. In N23−‐radical‐bridged diterbium complexes, the radical bridge induces crystal‐field and magnetic anisotropy that interferes destructively with that of the outer ligands. The performance of polynuclear exchange‐coupled SMMs may be significantly enhanced if the crystal‐field and magnetic anisotropy induced by the local ligands and the bridging ligands are engineered collinear to each other.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202200227</identifier><identifier>PMID: 35419897</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>ab initio calculations ; Bridges ; Coupling (molecular) ; crystal-field theory ; Crystals ; exchange interaction ; Ligands ; Magnets ; Metal ions ; quantum chemistry ; Radicals ; single-molecule magnets ; Terbium</subject><ispartof>Chemistry : a European journal, 2022-05, Vol.28 (30), p.e202200227-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3037-743f3a42e02fa4af7f474d348015999051eeeb5089dc9ba89db72359824842553</citedby><cites>FETCH-LOGICAL-c3037-743f3a42e02fa4af7f474d348015999051eeeb5089dc9ba89db72359824842553</cites><orcidid>0000-0001-5015-4225 ; 0000-0003-4207-3307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.202200227$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.202200227$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35419897$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Giang Truong</creatorcontrib><creatorcontrib>Ungur, Liviu</creatorcontrib><title>The Role of Radical Bridges in Polynuclear Single‐Molecule Magnets</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Employing radical bridges between anisotropic metal ions has been a viable route to achieve high‐performance single‐molecule magnets (SMMs). While the bridges have been mainly considered for their ability to promote exchange interactions, the crystal‐field effect arising from them has not been taken into account explicitly. This lack of consideration may distort the understanding and limit the development of the entire family. To shed light on this aspect, herein we report a theoretical investigation of a series of N23- ‐radical‐bridged diterbium complexes. It is found that while promoting strong exchange coupling between the terbium ions, the N23- ‐radical induces a crystal field that interferes destructively with that of the outer ligands, and thus reduces the overall SMM behavior. Based on the theoretical results, we conclude that the SMM behavior in this series could be further maximized if the crystal field of the outer ligands is designed to be collinear with that of the radical bridge. This conclusion can be generalized to all exchange‐coupled SMMs. In N23−‐radical‐bridged diterbium complexes, the radical bridge induces crystal‐field and magnetic anisotropy that interferes destructively with that of the outer ligands. The performance of polynuclear exchange‐coupled SMMs may be significantly enhanced if the crystal‐field and magnetic anisotropy induced by the local ligands and the bridging ligands are engineered collinear to each other.</description><subject>ab initio calculations</subject><subject>Bridges</subject><subject>Coupling (molecular)</subject><subject>crystal-field theory</subject><subject>Crystals</subject><subject>exchange interaction</subject><subject>Ligands</subject><subject>Magnets</subject><subject>Metal ions</subject><subject>quantum chemistry</subject><subject>Radicals</subject><subject>single-molecule magnets</subject><subject>Terbium</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwkAUhSdGI4huXZombtwU57fTWSqimEA0iOvJtL2FkqHFDo1h5yP4jD6JQ0BM3Lg6ucl3Tm4-hM4J7hKM6XU6g0WXYkr9QeUBahNBSchkJA5RGysuw0gw1UInzs0xxipi7Bi1mOBExUq20d1kBsG4shBUeTA2WZEaG9zWRTYFFxRl8FzZddmkFkwdvBTl1MLXx-fI82njOyMzLWHlTtFRbqyDs1120Ot9f9IbhMOnh8fezTBMGWYylJzlzHAKmOaGm1zmXPKM8RgToZTCggBAInCsslQlxkciKRMqpjzmVAjWQVfb3WVdvTXgVnpRuBSsNSVUjdM0EpgKLiPi0cs_6Lxq6tJ_p6mkJIpxTJinulsqrSvnasj1si4Wpl5rgvXGr9741Xu_vnCxm22SBWR7_EeoB9QWeC8srP-Z071Bf_Q7_g0tA4Ti</recordid><startdate>20220525</startdate><enddate>20220525</enddate><creator>Nguyen, Giang Truong</creator><creator>Ungur, Liviu</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5015-4225</orcidid><orcidid>https://orcid.org/0000-0003-4207-3307</orcidid></search><sort><creationdate>20220525</creationdate><title>The Role of Radical Bridges in Polynuclear Single‐Molecule Magnets</title><author>Nguyen, Giang Truong ; Ungur, Liviu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3037-743f3a42e02fa4af7f474d348015999051eeeb5089dc9ba89db72359824842553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ab initio calculations</topic><topic>Bridges</topic><topic>Coupling (molecular)</topic><topic>crystal-field theory</topic><topic>Crystals</topic><topic>exchange interaction</topic><topic>Ligands</topic><topic>Magnets</topic><topic>Metal ions</topic><topic>quantum chemistry</topic><topic>Radicals</topic><topic>single-molecule magnets</topic><topic>Terbium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Giang Truong</creatorcontrib><creatorcontrib>Ungur, Liviu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Giang Truong</au><au>Ungur, Liviu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Radical Bridges in Polynuclear Single‐Molecule Magnets</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2022-05-25</date><risdate>2022</risdate><volume>28</volume><issue>30</issue><spage>e202200227</spage><epage>n/a</epage><pages>e202200227-n/a</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Employing radical bridges between anisotropic metal ions has been a viable route to achieve high‐performance single‐molecule magnets (SMMs). While the bridges have been mainly considered for their ability to promote exchange interactions, the crystal‐field effect arising from them has not been taken into account explicitly. This lack of consideration may distort the understanding and limit the development of the entire family. To shed light on this aspect, herein we report a theoretical investigation of a series of N23- ‐radical‐bridged diterbium complexes. It is found that while promoting strong exchange coupling between the terbium ions, the N23- ‐radical induces a crystal field that interferes destructively with that of the outer ligands, and thus reduces the overall SMM behavior. Based on the theoretical results, we conclude that the SMM behavior in this series could be further maximized if the crystal field of the outer ligands is designed to be collinear with that of the radical bridge. This conclusion can be generalized to all exchange‐coupled SMMs. In N23−‐radical‐bridged diterbium complexes, the radical bridge induces crystal‐field and magnetic anisotropy that interferes destructively with that of the outer ligands. The performance of polynuclear exchange‐coupled SMMs may be significantly enhanced if the crystal‐field and magnetic anisotropy induced by the local ligands and the bridging ligands are engineered collinear to each other.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35419897</pmid><doi>10.1002/chem.202200227</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5015-4225</orcidid><orcidid>https://orcid.org/0000-0003-4207-3307</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2022-05, Vol.28 (30), p.e202200227-n/a
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_2650254761
source Access via Wiley Online Library
subjects ab initio calculations
Bridges
Coupling (molecular)
crystal-field theory
Crystals
exchange interaction
Ligands
Magnets
Metal ions
quantum chemistry
Radicals
single-molecule magnets
Terbium
title The Role of Radical Bridges in Polynuclear Single‐Molecule Magnets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T01%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Radical%20Bridges%20in%20Polynuclear%20Single%E2%80%90Molecule%20Magnets&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Nguyen,%20Giang%20Truong&rft.date=2022-05-25&rft.volume=28&rft.issue=30&rft.spage=e202200227&rft.epage=n/a&rft.pages=e202200227-n/a&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202200227&rft_dat=%3Cproquest_cross%3E2650254761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721680813&rft_id=info:pmid/35419897&rfr_iscdi=true