Impact of the multiscale viscoelasticity of quasi-2D self-assembled protein networks on stem cell expansion at liquid interfaces

Although not typically thought to sustain cell adhesion and expansion, liquid substrates have recently been shown to support such phenotypes, providing protein nanosheets could be assembled at corresponding liquid-liquid interfaces. However, the precise mechanical properties required from such quasi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2022-05, Vol.284, p.121494-121494, Article 121494
Hauptverfasser: Kong, Dexu, Peng, Lihui, Bosch-Fortea, Minerva, Chrysanthou, Alexandra, Alexis, Cardee V.J-M., Matellan, Carlos, Zarbakhsh, Ali, Mastroianni, Giulia, del Rio Hernandez, Armando, Gautrot, Julien E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121494
container_issue
container_start_page 121494
container_title Biomaterials
container_volume 284
creator Kong, Dexu
Peng, Lihui
Bosch-Fortea, Minerva
Chrysanthou, Alexandra
Alexis, Cardee V.J-M.
Matellan, Carlos
Zarbakhsh, Ali
Mastroianni, Giulia
del Rio Hernandez, Armando
Gautrot, Julien E.
description Although not typically thought to sustain cell adhesion and expansion, liquid substrates have recently been shown to support such phenotypes, providing protein nanosheets could be assembled at corresponding liquid-liquid interfaces. However, the precise mechanical properties required from such quasi-2D nanoassemblies and how these correlate with molecular structure and nanoscale architecture has remained unclear. In this report, we screen a broad range of surfactants, proteins, oils and cell types and correlate interfacial mechanical properties with stem cell expansion. Correlations suggest an impact of interfacial viscoelasticity on the regulation of such behaviour. We combine interfacial rheology and magnetic tweezer-based interfacial microrheology to characterise the viscoelastic profile of protein nanosheets assembled at liquid-liquid interfaces. Based on neutron reflectometry and transmission electron microscopy data, we propose that the amorphous nanoarchitecture of quasi-2D protein nanosheets controls their multi-scale viscoelasticity which, in turn, correlates with cell expansion. This understanding paves the way for the rational design of protein nanosheets for microdroplet and bioemulsion-based stem cell manufacturing and screening platforms.
doi_str_mv 10.1016/j.biomaterials.2022.121494
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2649998382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961222001338</els_id><sourcerecordid>2649998382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-b3aaf6dc7dc59d512d6d78c4bf92fe330092494b456186d1f6386dd5764c0ce23</originalsourceid><addsrcrecordid>eNqNUctuFDEQtBCILIFfQBYnLrP4Nd4ZbijhESkSFzhbHrstvHjGu25PIDc-Ha82II6cSt2q7q7qIuQVZ1vOuH6z304xz7ZCiTbhVjAhtlxwNapHZMOH3dD1I-sfkw3jSnSj5uKCPEPcs1YzJZ6SC9krLnvON-TXzXywrtIcaP0GdF5TjehsAnrXMEOyWKOL9f7EOK4WYyeuKUIKnUWEeUrg6aHkCnGhC9QfuXxHmheKFWbqICUKPw92wdh6ttIUj2v0NC5NfbAO8Dl5EpoLePGAl-Trh_dfrj51t58_3ly9u-2ckqJ2k7Q2aO923vWj77nw2u8Gp6YwigBSMjaK9oBJ9ZoP2vOgZQPf77RyzIGQl-T1eW8Te1wBq5mbwabPLpBXNEKrcRwHOZyob89UVzJigWAOJc623BvOzCkBszf_JmBOCZhzAm345cOddZrB_x398_JGuD4ToLm9i1AMugiLAx8LuGp8jv9z5zf7IKDi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649998382</pqid></control><display><type>article</type><title>Impact of the multiscale viscoelasticity of quasi-2D self-assembled protein networks on stem cell expansion at liquid interfaces</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Kong, Dexu ; Peng, Lihui ; Bosch-Fortea, Minerva ; Chrysanthou, Alexandra ; Alexis, Cardee V.J-M. ; Matellan, Carlos ; Zarbakhsh, Ali ; Mastroianni, Giulia ; del Rio Hernandez, Armando ; Gautrot, Julien E.</creator><creatorcontrib>Kong, Dexu ; Peng, Lihui ; Bosch-Fortea, Minerva ; Chrysanthou, Alexandra ; Alexis, Cardee V.J-M. ; Matellan, Carlos ; Zarbakhsh, Ali ; Mastroianni, Giulia ; del Rio Hernandez, Armando ; Gautrot, Julien E.</creatorcontrib><description>Although not typically thought to sustain cell adhesion and expansion, liquid substrates have recently been shown to support such phenotypes, providing protein nanosheets could be assembled at corresponding liquid-liquid interfaces. However, the precise mechanical properties required from such quasi-2D nanoassemblies and how these correlate with molecular structure and nanoscale architecture has remained unclear. In this report, we screen a broad range of surfactants, proteins, oils and cell types and correlate interfacial mechanical properties with stem cell expansion. Correlations suggest an impact of interfacial viscoelasticity on the regulation of such behaviour. We combine interfacial rheology and magnetic tweezer-based interfacial microrheology to characterise the viscoelastic profile of protein nanosheets assembled at liquid-liquid interfaces. Based on neutron reflectometry and transmission electron microscopy data, we propose that the amorphous nanoarchitecture of quasi-2D protein nanosheets controls their multi-scale viscoelasticity which, in turn, correlates with cell expansion. This understanding paves the way for the rational design of protein nanosheets for microdroplet and bioemulsion-based stem cell manufacturing and screening platforms.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2022.121494</identifier><identifier>PMID: 35413511</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>2D nanomaterials ; Cell Proliferation ; Liquid-liquid interface ; Protein nanosheet ; Proteins - chemistry ; Rheology ; Self-assembly ; Stem Cells ; Viscoelasticity ; Viscosity</subject><ispartof>Biomaterials, 2022-05, Vol.284, p.121494-121494, Article 121494</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-b3aaf6dc7dc59d512d6d78c4bf92fe330092494b456186d1f6386dd5764c0ce23</citedby><cites>FETCH-LOGICAL-c432t-b3aaf6dc7dc59d512d6d78c4bf92fe330092494b456186d1f6386dd5764c0ce23</cites><orcidid>0000-0003-2831-2818 ; 0000-0003-0418-0590 ; 0000-0002-1614-2578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2022.121494$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35413511$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kong, Dexu</creatorcontrib><creatorcontrib>Peng, Lihui</creatorcontrib><creatorcontrib>Bosch-Fortea, Minerva</creatorcontrib><creatorcontrib>Chrysanthou, Alexandra</creatorcontrib><creatorcontrib>Alexis, Cardee V.J-M.</creatorcontrib><creatorcontrib>Matellan, Carlos</creatorcontrib><creatorcontrib>Zarbakhsh, Ali</creatorcontrib><creatorcontrib>Mastroianni, Giulia</creatorcontrib><creatorcontrib>del Rio Hernandez, Armando</creatorcontrib><creatorcontrib>Gautrot, Julien E.</creatorcontrib><title>Impact of the multiscale viscoelasticity of quasi-2D self-assembled protein networks on stem cell expansion at liquid interfaces</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Although not typically thought to sustain cell adhesion and expansion, liquid substrates have recently been shown to support such phenotypes, providing protein nanosheets could be assembled at corresponding liquid-liquid interfaces. However, the precise mechanical properties required from such quasi-2D nanoassemblies and how these correlate with molecular structure and nanoscale architecture has remained unclear. In this report, we screen a broad range of surfactants, proteins, oils and cell types and correlate interfacial mechanical properties with stem cell expansion. Correlations suggest an impact of interfacial viscoelasticity on the regulation of such behaviour. We combine interfacial rheology and magnetic tweezer-based interfacial microrheology to characterise the viscoelastic profile of protein nanosheets assembled at liquid-liquid interfaces. Based on neutron reflectometry and transmission electron microscopy data, we propose that the amorphous nanoarchitecture of quasi-2D protein nanosheets controls their multi-scale viscoelasticity which, in turn, correlates with cell expansion. This understanding paves the way for the rational design of protein nanosheets for microdroplet and bioemulsion-based stem cell manufacturing and screening platforms.</description><subject>2D nanomaterials</subject><subject>Cell Proliferation</subject><subject>Liquid-liquid interface</subject><subject>Protein nanosheet</subject><subject>Proteins - chemistry</subject><subject>Rheology</subject><subject>Self-assembly</subject><subject>Stem Cells</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUctuFDEQtBCILIFfQBYnLrP4Nd4ZbijhESkSFzhbHrstvHjGu25PIDc-Ha82II6cSt2q7q7qIuQVZ1vOuH6z304xz7ZCiTbhVjAhtlxwNapHZMOH3dD1I-sfkw3jSnSj5uKCPEPcs1YzJZ6SC9krLnvON-TXzXywrtIcaP0GdF5TjehsAnrXMEOyWKOL9f7EOK4WYyeuKUIKnUWEeUrg6aHkCnGhC9QfuXxHmheKFWbqICUKPw92wdh6ttIUj2v0NC5NfbAO8Dl5EpoLePGAl-Trh_dfrj51t58_3ly9u-2ckqJ2k7Q2aO923vWj77nw2u8Gp6YwigBSMjaK9oBJ9ZoP2vOgZQPf77RyzIGQl-T1eW8Te1wBq5mbwabPLpBXNEKrcRwHOZyob89UVzJigWAOJc623BvOzCkBszf_JmBOCZhzAm345cOddZrB_x398_JGuD4ToLm9i1AMugiLAx8LuGp8jv9z5zf7IKDi</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Kong, Dexu</creator><creator>Peng, Lihui</creator><creator>Bosch-Fortea, Minerva</creator><creator>Chrysanthou, Alexandra</creator><creator>Alexis, Cardee V.J-M.</creator><creator>Matellan, Carlos</creator><creator>Zarbakhsh, Ali</creator><creator>Mastroianni, Giulia</creator><creator>del Rio Hernandez, Armando</creator><creator>Gautrot, Julien E.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2831-2818</orcidid><orcidid>https://orcid.org/0000-0003-0418-0590</orcidid><orcidid>https://orcid.org/0000-0002-1614-2578</orcidid></search><sort><creationdate>202205</creationdate><title>Impact of the multiscale viscoelasticity of quasi-2D self-assembled protein networks on stem cell expansion at liquid interfaces</title><author>Kong, Dexu ; Peng, Lihui ; Bosch-Fortea, Minerva ; Chrysanthou, Alexandra ; Alexis, Cardee V.J-M. ; Matellan, Carlos ; Zarbakhsh, Ali ; Mastroianni, Giulia ; del Rio Hernandez, Armando ; Gautrot, Julien E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-b3aaf6dc7dc59d512d6d78c4bf92fe330092494b456186d1f6386dd5764c0ce23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>2D nanomaterials</topic><topic>Cell Proliferation</topic><topic>Liquid-liquid interface</topic><topic>Protein nanosheet</topic><topic>Proteins - chemistry</topic><topic>Rheology</topic><topic>Self-assembly</topic><topic>Stem Cells</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Dexu</creatorcontrib><creatorcontrib>Peng, Lihui</creatorcontrib><creatorcontrib>Bosch-Fortea, Minerva</creatorcontrib><creatorcontrib>Chrysanthou, Alexandra</creatorcontrib><creatorcontrib>Alexis, Cardee V.J-M.</creatorcontrib><creatorcontrib>Matellan, Carlos</creatorcontrib><creatorcontrib>Zarbakhsh, Ali</creatorcontrib><creatorcontrib>Mastroianni, Giulia</creatorcontrib><creatorcontrib>del Rio Hernandez, Armando</creatorcontrib><creatorcontrib>Gautrot, Julien E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Dexu</au><au>Peng, Lihui</au><au>Bosch-Fortea, Minerva</au><au>Chrysanthou, Alexandra</au><au>Alexis, Cardee V.J-M.</au><au>Matellan, Carlos</au><au>Zarbakhsh, Ali</au><au>Mastroianni, Giulia</au><au>del Rio Hernandez, Armando</au><au>Gautrot, Julien E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of the multiscale viscoelasticity of quasi-2D self-assembled protein networks on stem cell expansion at liquid interfaces</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2022-05</date><risdate>2022</risdate><volume>284</volume><spage>121494</spage><epage>121494</epage><pages>121494-121494</pages><artnum>121494</artnum><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Although not typically thought to sustain cell adhesion and expansion, liquid substrates have recently been shown to support such phenotypes, providing protein nanosheets could be assembled at corresponding liquid-liquid interfaces. However, the precise mechanical properties required from such quasi-2D nanoassemblies and how these correlate with molecular structure and nanoscale architecture has remained unclear. In this report, we screen a broad range of surfactants, proteins, oils and cell types and correlate interfacial mechanical properties with stem cell expansion. Correlations suggest an impact of interfacial viscoelasticity on the regulation of such behaviour. We combine interfacial rheology and magnetic tweezer-based interfacial microrheology to characterise the viscoelastic profile of protein nanosheets assembled at liquid-liquid interfaces. Based on neutron reflectometry and transmission electron microscopy data, we propose that the amorphous nanoarchitecture of quasi-2D protein nanosheets controls their multi-scale viscoelasticity which, in turn, correlates with cell expansion. This understanding paves the way for the rational design of protein nanosheets for microdroplet and bioemulsion-based stem cell manufacturing and screening platforms.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>35413511</pmid><doi>10.1016/j.biomaterials.2022.121494</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2831-2818</orcidid><orcidid>https://orcid.org/0000-0003-0418-0590</orcidid><orcidid>https://orcid.org/0000-0002-1614-2578</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2022-05, Vol.284, p.121494-121494, Article 121494
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_2649998382
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects 2D nanomaterials
Cell Proliferation
Liquid-liquid interface
Protein nanosheet
Proteins - chemistry
Rheology
Self-assembly
Stem Cells
Viscoelasticity
Viscosity
title Impact of the multiscale viscoelasticity of quasi-2D self-assembled protein networks on stem cell expansion at liquid interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A11%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20the%20multiscale%20viscoelasticity%20of%20quasi-2D%20self-assembled%20protein%20networks%20on%20stem%20cell%20expansion%20at%20liquid%20interfaces&rft.jtitle=Biomaterials&rft.au=Kong,%20Dexu&rft.date=2022-05&rft.volume=284&rft.spage=121494&rft.epage=121494&rft.pages=121494-121494&rft.artnum=121494&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2022.121494&rft_dat=%3Cproquest_cross%3E2649998382%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649998382&rft_id=info:pmid/35413511&rft_els_id=S0142961222001338&rfr_iscdi=true