Lipase-triggered drug release from BCL2 inhibitor ABT-199-loaded nanoparticles to elevate anti-leukemic activity through enhanced drug targeting on the mitochondrial membrane

Selective BCL2 inhibitor ABT-199 has been approved to treat hematological malignancies including acute myeloid leukemia (AML). However, acquired drug resistance and severe side effects occur after extended treatment limiting the clinical usage of ABT-199. Here, we successfully encapsulated pure ABT-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2022-06, Vol.145, p.246-259
Hauptverfasser: Liang, Bin, Jiang, Dawei, Pan, Luqi, Xiong, Fang, Feng, Shuya, Wu, Shenghao, Ye, Haige, Yu, Zhijie, Shi, Changcan, Gao, Shenmeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Selective BCL2 inhibitor ABT-199 has been approved to treat hematological malignancies including acute myeloid leukemia (AML). However, acquired drug resistance and severe side effects occur after extended treatment limiting the clinical usage of ABT-199. Here, we successfully encapsulated pure ABT-199 in amphiphilic mPEG-b-PTMC169 block copolymer, forming mPEG-b-PTMC169@ABT-199 nanoparticles (abbreviated as PEG-ABT-199), which presented better aqueous dispersion and higher efficiency of loading and encapsulation than pure ABT-199. We then compared the anti-leukemic ability of pure ABT-199 and PEG-ABT-199 in vitro and in vivo. PEG-ABT-199 had a lower IC50 value compared with pure ABT-199 in MV4-11 and MOLM-13 cell lines. In addition, PEG-ABT-199 significantly induced apoptosis and decreased colony number than pure ABT-199. Most importantly, PEG-ABT-199 markedly reduced leukemic burden, inhibited the infiltration of leukemic blasts in the spleen, and extended the overall survival (OS) in MLL-AF9-transduced murine AML compared with free ABT-199. Meanwhile, the blank PEG169 NP was non-toxic to normal hematopoiesis in vitro and in vivo, suggesting that PEG169 NP is a safe carrier. Mechanistically, PEG-ABT-199 enhanced mitochondria-targeted delivery of ABT-199 to trigger the collapse of mitochondrial membrane potential (MMP), the release of cytochrome c (cyt-c), and mitochondria-based apoptosis. In conclusion, our results suggest that PEG-ABT-199 has more vital anti-leukemic ability than pure ABT-199. PEG-ABT-199 has potential application in clinical trials to alleviate side effects and improve anti-leukemia ability. ATB-199, an orally selective inhibitor for BCL2 protein, presents marked activity in relapsed or refractory AML, T-ALL, and CLL patients. However, ABT-199 resistance severely limits the further clinical usage because of off-target effects, non-specific toxicities, and low delivery of drugs. To reduce the side-effects and improve the solubility and bioavailability, ABT-199 was encapsulated into the amphiphilic mPEG-b-PTMC block copolymer by co-assembly method to obtain mPEG-b-PTMC@ABT-199 nanoparticles (PEG-ABT-199). PEG-ABT-199 has several advantages compared with pure ABT-199. 1.PEG-ABT-199 presents better aqueous dispersion and higher efficiencies of loading and encapsulation than pure ABT-199. 2. PEG-ABT-199 substantially enhances the anti-leukemic ability in vitro and in vivo compared with pure ABT-199. 3. PEG-ABT-199 has little effects on norm
ISSN:1742-7061
1878-7568
DOI:10.1016/j.actbio.2022.04.005