Avoiding Structural Collapse to Reduce Lead Leakage in Perovskite Photovoltaics

Perovskite solar cells (PSCs) have become a promising candidate for the next‐generation photovoltaic technologies. As an essential element for high‐efficiency PSCs however, the heavy metal Pb is soluble in water, causing a serious threat to the environment and human health. Due to the weak ionic bon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2022-07, Vol.61 (27), p.e202204314-n/a
Hauptverfasser: Wei, Xueyuan, Xiao, Mengqi, Wang, Boyu, Wang, Chenyue, Li, Yuekang, Dou, Jing, Cui, Zhenhua, Dou, Jie, Wang, Hailiang, Ma, Sai, Zhu, Cheng, Yuan, Guizhou, Yang, Ning, Song, Tinglu, Zhou, Huanping, Chen, Haining, Bai, Yang, Chen, Qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 27
container_start_page e202204314
container_title Angewandte Chemie International Edition
container_volume 61
creator Wei, Xueyuan
Xiao, Mengqi
Wang, Boyu
Wang, Chenyue
Li, Yuekang
Dou, Jing
Cui, Zhenhua
Dou, Jie
Wang, Hailiang
Ma, Sai
Zhu, Cheng
Yuan, Guizhou
Yang, Ning
Song, Tinglu
Zhou, Huanping
Chen, Haining
Bai, Yang
Chen, Qi
description Perovskite solar cells (PSCs) have become a promising candidate for the next‐generation photovoltaic technologies. As an essential element for high‐efficiency PSCs however, the heavy metal Pb is soluble in water, causing a serious threat to the environment and human health. Due to the weak ionic bonding in three‐dimensional (3D) perovskites, drastic structure decomposition occurs when immersing the perovskite film in water, which accelerates the Pb leakage. By introducing the chemically stable Dion‐Jacobson (DJ) 2D perovskite at the 3D perovskite surface, the film dissolution is significantly slowed down, which retards lead leakage. As a result, the Pb contamination is dramatically reduced under various extreme conditions. In addition, the PSCs device deliver a power conversion efficiency (PCE) of 23.6 % and retain over 95 % of their initial PCE after the maximum power point tracking for over 1100 h. Crystal structural collapse in perovskite films governs the Pb leakage after exposure to water as indicated by Noyes‐Whitney Model simulation. It is effectively retarded by constructing a chemically stable Dion‐Jacobson two‐dimensional (2D) perovskite (DOE)PbI4−xClx at the surface of the film.
doi_str_mv 10.1002/anie.202204314
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2649585704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649585704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3734-494703bb014cf33fc9ea4386ff5bd56317ce4ea8c529088024d1388a9cf63f833</originalsourceid><addsrcrecordid>eNqFkDtPwzAURi0E4lFYGVEkFpYU29dJnLGqeEkVVDxmy3VuwJDGxU6K-Pe4KhSJhcXXw7nf_XQIOWZ0yCjl57q1OOSUcyqAiS2yzzLOUigK2I5_AZAWMmN75CCE18hLSfNdsgeZYDyXbJ_cjZbOVrZ9Th4635uu97pJxq5p9CJg0rnkHqveYDJBXa2eN_2MiW2TKXq3DG-2w2T64jq3dE2nrQmHZKfWTcCj7zkgT5cXj-PrdHJ3dTMeTVIDBYhUlKKgMJtRJkwNUJsStQCZ13U2q7IcWGFQoJYm4yWNpbmoGEipS1PnUEuAATlb5y68e-8xdGpug8HYu0XXB8VzUWYyK6KWATn9g7663rexnVo54EUZb0RquKaMdyF4rNXC27n2n4pRtVKtVqrVRnVcOPmO7WdzrDb4j9sIlGvgwzb4-U-cGt3eXPyGfwFfpYk7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681279290</pqid></control><display><type>article</type><title>Avoiding Structural Collapse to Reduce Lead Leakage in Perovskite Photovoltaics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wei, Xueyuan ; Xiao, Mengqi ; Wang, Boyu ; Wang, Chenyue ; Li, Yuekang ; Dou, Jing ; Cui, Zhenhua ; Dou, Jie ; Wang, Hailiang ; Ma, Sai ; Zhu, Cheng ; Yuan, Guizhou ; Yang, Ning ; Song, Tinglu ; Zhou, Huanping ; Chen, Haining ; Bai, Yang ; Chen, Qi</creator><creatorcontrib>Wei, Xueyuan ; Xiao, Mengqi ; Wang, Boyu ; Wang, Chenyue ; Li, Yuekang ; Dou, Jing ; Cui, Zhenhua ; Dou, Jie ; Wang, Hailiang ; Ma, Sai ; Zhu, Cheng ; Yuan, Guizhou ; Yang, Ning ; Song, Tinglu ; Zhou, Huanping ; Chen, Haining ; Bai, Yang ; Chen, Qi</creatorcontrib><description>Perovskite solar cells (PSCs) have become a promising candidate for the next‐generation photovoltaic technologies. As an essential element for high‐efficiency PSCs however, the heavy metal Pb is soluble in water, causing a serious threat to the environment and human health. Due to the weak ionic bonding in three‐dimensional (3D) perovskites, drastic structure decomposition occurs when immersing the perovskite film in water, which accelerates the Pb leakage. By introducing the chemically stable Dion‐Jacobson (DJ) 2D perovskite at the 3D perovskite surface, the film dissolution is significantly slowed down, which retards lead leakage. As a result, the Pb contamination is dramatically reduced under various extreme conditions. In addition, the PSCs device deliver a power conversion efficiency (PCE) of 23.6 % and retain over 95 % of their initial PCE after the maximum power point tracking for over 1100 h. Crystal structural collapse in perovskite films governs the Pb leakage after exposure to water as indicated by Noyes‐Whitney Model simulation. It is effectively retarded by constructing a chemically stable Dion‐Jacobson two‐dimensional (2D) perovskite (DOE)PbI4−xClx at the surface of the film.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202204314</identifier><identifier>PMID: 35412681</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Bonding strength ; Contamination ; Dissolution Behaviour ; Energy conversion efficiency ; Heavy metals ; Lead ; Leakage ; Long-Term Stability ; Maximum power tracking ; Pb Leakage ; Perovskite Solar Cells ; Perovskites ; Photovoltaic cells ; Photovoltaics ; Solar cells ; Structural Collapse</subject><ispartof>Angewandte Chemie International Edition, 2022-07, Vol.61 (27), p.e202204314-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3734-494703bb014cf33fc9ea4386ff5bd56317ce4ea8c529088024d1388a9cf63f833</citedby><cites>FETCH-LOGICAL-c3734-494703bb014cf33fc9ea4386ff5bd56317ce4ea8c529088024d1388a9cf63f833</cites><orcidid>0000-0002-9647-5873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202204314$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202204314$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35412681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Xueyuan</creatorcontrib><creatorcontrib>Xiao, Mengqi</creatorcontrib><creatorcontrib>Wang, Boyu</creatorcontrib><creatorcontrib>Wang, Chenyue</creatorcontrib><creatorcontrib>Li, Yuekang</creatorcontrib><creatorcontrib>Dou, Jing</creatorcontrib><creatorcontrib>Cui, Zhenhua</creatorcontrib><creatorcontrib>Dou, Jie</creatorcontrib><creatorcontrib>Wang, Hailiang</creatorcontrib><creatorcontrib>Ma, Sai</creatorcontrib><creatorcontrib>Zhu, Cheng</creatorcontrib><creatorcontrib>Yuan, Guizhou</creatorcontrib><creatorcontrib>Yang, Ning</creatorcontrib><creatorcontrib>Song, Tinglu</creatorcontrib><creatorcontrib>Zhou, Huanping</creatorcontrib><creatorcontrib>Chen, Haining</creatorcontrib><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Chen, Qi</creatorcontrib><title>Avoiding Structural Collapse to Reduce Lead Leakage in Perovskite Photovoltaics</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Perovskite solar cells (PSCs) have become a promising candidate for the next‐generation photovoltaic technologies. As an essential element for high‐efficiency PSCs however, the heavy metal Pb is soluble in water, causing a serious threat to the environment and human health. Due to the weak ionic bonding in three‐dimensional (3D) perovskites, drastic structure decomposition occurs when immersing the perovskite film in water, which accelerates the Pb leakage. By introducing the chemically stable Dion‐Jacobson (DJ) 2D perovskite at the 3D perovskite surface, the film dissolution is significantly slowed down, which retards lead leakage. As a result, the Pb contamination is dramatically reduced under various extreme conditions. In addition, the PSCs device deliver a power conversion efficiency (PCE) of 23.6 % and retain over 95 % of their initial PCE after the maximum power point tracking for over 1100 h. Crystal structural collapse in perovskite films governs the Pb leakage after exposure to water as indicated by Noyes‐Whitney Model simulation. It is effectively retarded by constructing a chemically stable Dion‐Jacobson two‐dimensional (2D) perovskite (DOE)PbI4−xClx at the surface of the film.</description><subject>Bonding strength</subject><subject>Contamination</subject><subject>Dissolution Behaviour</subject><subject>Energy conversion efficiency</subject><subject>Heavy metals</subject><subject>Lead</subject><subject>Leakage</subject><subject>Long-Term Stability</subject><subject>Maximum power tracking</subject><subject>Pb Leakage</subject><subject>Perovskite Solar Cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Solar cells</subject><subject>Structural Collapse</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAURi0E4lFYGVEkFpYU29dJnLGqeEkVVDxmy3VuwJDGxU6K-Pe4KhSJhcXXw7nf_XQIOWZ0yCjl57q1OOSUcyqAiS2yzzLOUigK2I5_AZAWMmN75CCE18hLSfNdsgeZYDyXbJ_cjZbOVrZ9Th4635uu97pJxq5p9CJg0rnkHqveYDJBXa2eN_2MiW2TKXq3DG-2w2T64jq3dE2nrQmHZKfWTcCj7zkgT5cXj-PrdHJ3dTMeTVIDBYhUlKKgMJtRJkwNUJsStQCZ13U2q7IcWGFQoJYm4yWNpbmoGEipS1PnUEuAATlb5y68e-8xdGpug8HYu0XXB8VzUWYyK6KWATn9g7663rexnVo54EUZb0RquKaMdyF4rNXC27n2n4pRtVKtVqrVRnVcOPmO7WdzrDb4j9sIlGvgwzb4-U-cGt3eXPyGfwFfpYk7</recordid><startdate>20220704</startdate><enddate>20220704</enddate><creator>Wei, Xueyuan</creator><creator>Xiao, Mengqi</creator><creator>Wang, Boyu</creator><creator>Wang, Chenyue</creator><creator>Li, Yuekang</creator><creator>Dou, Jing</creator><creator>Cui, Zhenhua</creator><creator>Dou, Jie</creator><creator>Wang, Hailiang</creator><creator>Ma, Sai</creator><creator>Zhu, Cheng</creator><creator>Yuan, Guizhou</creator><creator>Yang, Ning</creator><creator>Song, Tinglu</creator><creator>Zhou, Huanping</creator><creator>Chen, Haining</creator><creator>Bai, Yang</creator><creator>Chen, Qi</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9647-5873</orcidid></search><sort><creationdate>20220704</creationdate><title>Avoiding Structural Collapse to Reduce Lead Leakage in Perovskite Photovoltaics</title><author>Wei, Xueyuan ; Xiao, Mengqi ; Wang, Boyu ; Wang, Chenyue ; Li, Yuekang ; Dou, Jing ; Cui, Zhenhua ; Dou, Jie ; Wang, Hailiang ; Ma, Sai ; Zhu, Cheng ; Yuan, Guizhou ; Yang, Ning ; Song, Tinglu ; Zhou, Huanping ; Chen, Haining ; Bai, Yang ; Chen, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3734-494703bb014cf33fc9ea4386ff5bd56317ce4ea8c529088024d1388a9cf63f833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bonding strength</topic><topic>Contamination</topic><topic>Dissolution Behaviour</topic><topic>Energy conversion efficiency</topic><topic>Heavy metals</topic><topic>Lead</topic><topic>Leakage</topic><topic>Long-Term Stability</topic><topic>Maximum power tracking</topic><topic>Pb Leakage</topic><topic>Perovskite Solar Cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Solar cells</topic><topic>Structural Collapse</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Xueyuan</creatorcontrib><creatorcontrib>Xiao, Mengqi</creatorcontrib><creatorcontrib>Wang, Boyu</creatorcontrib><creatorcontrib>Wang, Chenyue</creatorcontrib><creatorcontrib>Li, Yuekang</creatorcontrib><creatorcontrib>Dou, Jing</creatorcontrib><creatorcontrib>Cui, Zhenhua</creatorcontrib><creatorcontrib>Dou, Jie</creatorcontrib><creatorcontrib>Wang, Hailiang</creatorcontrib><creatorcontrib>Ma, Sai</creatorcontrib><creatorcontrib>Zhu, Cheng</creatorcontrib><creatorcontrib>Yuan, Guizhou</creatorcontrib><creatorcontrib>Yang, Ning</creatorcontrib><creatorcontrib>Song, Tinglu</creatorcontrib><creatorcontrib>Zhou, Huanping</creatorcontrib><creatorcontrib>Chen, Haining</creatorcontrib><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Chen, Qi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Xueyuan</au><au>Xiao, Mengqi</au><au>Wang, Boyu</au><au>Wang, Chenyue</au><au>Li, Yuekang</au><au>Dou, Jing</au><au>Cui, Zhenhua</au><au>Dou, Jie</au><au>Wang, Hailiang</au><au>Ma, Sai</au><au>Zhu, Cheng</au><au>Yuan, Guizhou</au><au>Yang, Ning</au><au>Song, Tinglu</au><au>Zhou, Huanping</au><au>Chen, Haining</au><au>Bai, Yang</au><au>Chen, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Avoiding Structural Collapse to Reduce Lead Leakage in Perovskite Photovoltaics</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2022-07-04</date><risdate>2022</risdate><volume>61</volume><issue>27</issue><spage>e202204314</spage><epage>n/a</epage><pages>e202204314-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Perovskite solar cells (PSCs) have become a promising candidate for the next‐generation photovoltaic technologies. As an essential element for high‐efficiency PSCs however, the heavy metal Pb is soluble in water, causing a serious threat to the environment and human health. Due to the weak ionic bonding in three‐dimensional (3D) perovskites, drastic structure decomposition occurs when immersing the perovskite film in water, which accelerates the Pb leakage. By introducing the chemically stable Dion‐Jacobson (DJ) 2D perovskite at the 3D perovskite surface, the film dissolution is significantly slowed down, which retards lead leakage. As a result, the Pb contamination is dramatically reduced under various extreme conditions. In addition, the PSCs device deliver a power conversion efficiency (PCE) of 23.6 % and retain over 95 % of their initial PCE after the maximum power point tracking for over 1100 h. Crystal structural collapse in perovskite films governs the Pb leakage after exposure to water as indicated by Noyes‐Whitney Model simulation. It is effectively retarded by constructing a chemically stable Dion‐Jacobson two‐dimensional (2D) perovskite (DOE)PbI4−xClx at the surface of the film.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35412681</pmid><doi>10.1002/anie.202204314</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-9647-5873</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2022-07, Vol.61 (27), p.e202204314-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2649585704
source Wiley Online Library Journals Frontfile Complete
subjects Bonding strength
Contamination
Dissolution Behaviour
Energy conversion efficiency
Heavy metals
Lead
Leakage
Long-Term Stability
Maximum power tracking
Pb Leakage
Perovskite Solar Cells
Perovskites
Photovoltaic cells
Photovoltaics
Solar cells
Structural Collapse
title Avoiding Structural Collapse to Reduce Lead Leakage in Perovskite Photovoltaics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A11%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Avoiding%20Structural%20Collapse%20to%20Reduce%20Lead%20Leakage%20in%20Perovskite%20Photovoltaics&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Wei,%20Xueyuan&rft.date=2022-07-04&rft.volume=61&rft.issue=27&rft.spage=e202204314&rft.epage=n/a&rft.pages=e202204314-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202204314&rft_dat=%3Cproquest_cross%3E2649585704%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2681279290&rft_id=info:pmid/35412681&rfr_iscdi=true