Probabilistic Analogical Mapping With Semantic Relation Networks
The human ability to flexibly reason using analogies with domain-general content depends on mechanisms for identifying relations between concepts, and for mapping concepts and their relations across analogs. Building on a recent model of how semantic relations can be learned from nonrelational word...
Gespeichert in:
Veröffentlicht in: | Psychological review 2022-10, Vol.129 (5), p.1078-1103 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1103 |
---|---|
container_issue | 5 |
container_start_page | 1078 |
container_title | Psychological review |
container_volume | 129 |
creator | Lu, Hongjing Ichien, Nicholas Holyoak, Keith J. |
description | The human ability to flexibly reason using analogies with domain-general content depends on mechanisms for identifying relations between concepts, and for mapping concepts and their relations across analogs. Building on a recent model of how semantic relations can be learned from nonrelational word embeddings, we present a new computational model of mapping between two analogs. The model adopts a Bayesian framework for probabilistic graph matching, operating on semantic relation networks constructed from distributed representations of individual concepts and of relations between concepts. Through comparisons of model predictions with human performance in a novel mapping task requiring integration of multiple relations, as well as in several classic studies, we demonstrate that the model accounts for a broad range of phenomena involving analogical mapping by both adults and children. We also show the potential for extending the model to deal with analog retrieval. Our approach demonstrates that human-like analogical mapping can emerge from comparison mechanisms applied to rich semantic representations of individual concepts and relations. |
doi_str_mv | 10.1037/rev0000358 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2648903149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2738605775</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-3cc88216d9cb97b97ef0d7773e432e1a9d1eed0aad5c45af93faf34148ecc5c3</originalsourceid><addsrcrecordid>eNp90FFL3TAUB_AgG3p39cUPMAp7kUFn0iRN8ja5uE1wU_SCvoXT9NTF9bY1aTfut1_K1Q32sHBIIPz4w_kTcszoB0a5Og34k6bDpd4jC2a4yZlQ7BVZpD-eF0beH5A3MT7OiBmzTw645NooJhbk43XoK6h86-PoXXbWQds_eAdt9hWGwXcP2Z0fv2e3uIFuBjfYwuj7LvuG468-_IiH5HUDbcSj53dJ1p_O16sv-eXV54vV2WUOgqkx585pXbCyNq4yKg02tFZKcRS8QAamZog1BailExIawxtouGBCo3PS8SU52cUOoX-aMI5246PDtoUO-ynaohTaUM6ESfTdP_Sxn0JaLCnFdUmlUvK_qpS00Omes97vlAt9jAEbOwS_gbC1jNq5fPu3_ITfPkdO1QbrP_Sl7QTyHYAB7BC3DkLqtMXophCwG-cwywpjZcpWmv8GB2KOWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650282659</pqid></control><display><type>article</type><title>Probabilistic Analogical Mapping With Semantic Relation Networks</title><source>MEDLINE</source><source>EBSCOhost APA PsycARTICLES</source><creator>Lu, Hongjing ; Ichien, Nicholas ; Holyoak, Keith J.</creator><contributor>Grigorenko, Elena L</contributor><creatorcontrib>Lu, Hongjing ; Ichien, Nicholas ; Holyoak, Keith J. ; Grigorenko, Elena L</creatorcontrib><description>The human ability to flexibly reason using analogies with domain-general content depends on mechanisms for identifying relations between concepts, and for mapping concepts and their relations across analogs. Building on a recent model of how semantic relations can be learned from nonrelational word embeddings, we present a new computational model of mapping between two analogs. The model adopts a Bayesian framework for probabilistic graph matching, operating on semantic relation networks constructed from distributed representations of individual concepts and of relations between concepts. Through comparisons of model predictions with human performance in a novel mapping task requiring integration of multiple relations, as well as in several classic studies, we demonstrate that the model accounts for a broad range of phenomena involving analogical mapping by both adults and children. We also show the potential for extending the model to deal with analog retrieval. Our approach demonstrates that human-like analogical mapping can emerge from comparison mechanisms applied to rich semantic representations of individual concepts and relations.</description><identifier>ISSN: 0033-295X</identifier><identifier>EISSN: 1939-1471</identifier><identifier>DOI: 10.1037/rev0000358</identifier><identifier>PMID: 35389714</identifier><language>eng</language><publisher>United States: American Psychological Association</publisher><subject>Adult ; Analog ; Analogy ; Bayes Theorem ; Bayesian analysis ; Child ; Computational Modeling ; Concepts ; Female ; Graph theory ; Human ; Human Information Storage ; Humans ; Learning ; Machine Learning ; Male ; Mapping ; Mathematical models ; Prediction ; Probability ; Retrieval ; Semantic Networks ; Semantics</subject><ispartof>Psychological review, 2022-10, Vol.129 (5), p.1078-1103</ispartof><rights>2022 American Psychological Association</rights><rights>2022, American Psychological Association</rights><rights>Copyright American Psychological Association Oct 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-3cc88216d9cb97b97ef0d7773e432e1a9d1eed0aad5c45af93faf34148ecc5c3</citedby><orcidid>0000-0001-8010-6267 ; 0000-0002-0928-0809 ; 0000-0003-0660-1176</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35389714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Grigorenko, Elena L</contributor><creatorcontrib>Lu, Hongjing</creatorcontrib><creatorcontrib>Ichien, Nicholas</creatorcontrib><creatorcontrib>Holyoak, Keith J.</creatorcontrib><title>Probabilistic Analogical Mapping With Semantic Relation Networks</title><title>Psychological review</title><addtitle>Psychol Rev</addtitle><description>The human ability to flexibly reason using analogies with domain-general content depends on mechanisms for identifying relations between concepts, and for mapping concepts and their relations across analogs. Building on a recent model of how semantic relations can be learned from nonrelational word embeddings, we present a new computational model of mapping between two analogs. The model adopts a Bayesian framework for probabilistic graph matching, operating on semantic relation networks constructed from distributed representations of individual concepts and of relations between concepts. Through comparisons of model predictions with human performance in a novel mapping task requiring integration of multiple relations, as well as in several classic studies, we demonstrate that the model accounts for a broad range of phenomena involving analogical mapping by both adults and children. We also show the potential for extending the model to deal with analog retrieval. Our approach demonstrates that human-like analogical mapping can emerge from comparison mechanisms applied to rich semantic representations of individual concepts and relations.</description><subject>Adult</subject><subject>Analog</subject><subject>Analogy</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Child</subject><subject>Computational Modeling</subject><subject>Concepts</subject><subject>Female</subject><subject>Graph theory</subject><subject>Human</subject><subject>Human Information Storage</subject><subject>Humans</subject><subject>Learning</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Mapping</subject><subject>Mathematical models</subject><subject>Prediction</subject><subject>Probability</subject><subject>Retrieval</subject><subject>Semantic Networks</subject><subject>Semantics</subject><issn>0033-295X</issn><issn>1939-1471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90FFL3TAUB_AgG3p39cUPMAp7kUFn0iRN8ja5uE1wU_SCvoXT9NTF9bY1aTfut1_K1Q32sHBIIPz4w_kTcszoB0a5Og34k6bDpd4jC2a4yZlQ7BVZpD-eF0beH5A3MT7OiBmzTw645NooJhbk43XoK6h86-PoXXbWQds_eAdt9hWGwXcP2Z0fv2e3uIFuBjfYwuj7LvuG468-_IiH5HUDbcSj53dJ1p_O16sv-eXV54vV2WUOgqkx585pXbCyNq4yKg02tFZKcRS8QAamZog1BailExIawxtouGBCo3PS8SU52cUOoX-aMI5246PDtoUO-ynaohTaUM6ESfTdP_Sxn0JaLCnFdUmlUvK_qpS00Omes97vlAt9jAEbOwS_gbC1jNq5fPu3_ITfPkdO1QbrP_Sl7QTyHYAB7BC3DkLqtMXophCwG-cwywpjZcpWmv8GB2KOWg</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Lu, Hongjing</creator><creator>Ichien, Nicholas</creator><creator>Holyoak, Keith J.</creator><general>American Psychological Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7RZ</scope><scope>PSYQQ</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8010-6267</orcidid><orcidid>https://orcid.org/0000-0002-0928-0809</orcidid><orcidid>https://orcid.org/0000-0003-0660-1176</orcidid></search><sort><creationdate>20221001</creationdate><title>Probabilistic Analogical Mapping With Semantic Relation Networks</title><author>Lu, Hongjing ; Ichien, Nicholas ; Holyoak, Keith J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-3cc88216d9cb97b97ef0d7773e432e1a9d1eed0aad5c45af93faf34148ecc5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adult</topic><topic>Analog</topic><topic>Analogy</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Child</topic><topic>Computational Modeling</topic><topic>Concepts</topic><topic>Female</topic><topic>Graph theory</topic><topic>Human</topic><topic>Human Information Storage</topic><topic>Humans</topic><topic>Learning</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Mapping</topic><topic>Mathematical models</topic><topic>Prediction</topic><topic>Probability</topic><topic>Retrieval</topic><topic>Semantic Networks</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Hongjing</creatorcontrib><creatorcontrib>Ichien, Nicholas</creatorcontrib><creatorcontrib>Holyoak, Keith J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>APA PsycArticles®</collection><collection>ProQuest One Psychology</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>MEDLINE - Academic</collection><jtitle>Psychological review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Hongjing</au><au>Ichien, Nicholas</au><au>Holyoak, Keith J.</au><au>Grigorenko, Elena L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic Analogical Mapping With Semantic Relation Networks</atitle><jtitle>Psychological review</jtitle><addtitle>Psychol Rev</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>129</volume><issue>5</issue><spage>1078</spage><epage>1103</epage><pages>1078-1103</pages><issn>0033-295X</issn><eissn>1939-1471</eissn><abstract>The human ability to flexibly reason using analogies with domain-general content depends on mechanisms for identifying relations between concepts, and for mapping concepts and their relations across analogs. Building on a recent model of how semantic relations can be learned from nonrelational word embeddings, we present a new computational model of mapping between two analogs. The model adopts a Bayesian framework for probabilistic graph matching, operating on semantic relation networks constructed from distributed representations of individual concepts and of relations between concepts. Through comparisons of model predictions with human performance in a novel mapping task requiring integration of multiple relations, as well as in several classic studies, we demonstrate that the model accounts for a broad range of phenomena involving analogical mapping by both adults and children. We also show the potential for extending the model to deal with analog retrieval. Our approach demonstrates that human-like analogical mapping can emerge from comparison mechanisms applied to rich semantic representations of individual concepts and relations.</abstract><cop>United States</cop><pub>American Psychological Association</pub><pmid>35389714</pmid><doi>10.1037/rev0000358</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-8010-6267</orcidid><orcidid>https://orcid.org/0000-0002-0928-0809</orcidid><orcidid>https://orcid.org/0000-0003-0660-1176</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-295X |
ispartof | Psychological review, 2022-10, Vol.129 (5), p.1078-1103 |
issn | 0033-295X 1939-1471 |
language | eng |
recordid | cdi_proquest_miscellaneous_2648903149 |
source | MEDLINE; EBSCOhost APA PsycARTICLES |
subjects | Adult Analog Analogy Bayes Theorem Bayesian analysis Child Computational Modeling Concepts Female Graph theory Human Human Information Storage Humans Learning Machine Learning Male Mapping Mathematical models Prediction Probability Retrieval Semantic Networks Semantics |
title | Probabilistic Analogical Mapping With Semantic Relation Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A45%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20Analogical%20Mapping%20With%20Semantic%20Relation%20Networks&rft.jtitle=Psychological%20review&rft.au=Lu,%20Hongjing&rft.date=2022-10-01&rft.volume=129&rft.issue=5&rft.spage=1078&rft.epage=1103&rft.pages=1078-1103&rft.issn=0033-295X&rft.eissn=1939-1471&rft_id=info:doi/10.1037/rev0000358&rft_dat=%3Cproquest_cross%3E2738605775%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2650282659&rft_id=info:pmid/35389714&rfr_iscdi=true |