Probabilistic Analogical Mapping With Semantic Relation Networks

The human ability to flexibly reason using analogies with domain-general content depends on mechanisms for identifying relations between concepts, and for mapping concepts and their relations across analogs. Building on a recent model of how semantic relations can be learned from nonrelational word...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychological review 2022-10, Vol.129 (5), p.1078-1103
Hauptverfasser: Lu, Hongjing, Ichien, Nicholas, Holyoak, Keith J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1103
container_issue 5
container_start_page 1078
container_title Psychological review
container_volume 129
creator Lu, Hongjing
Ichien, Nicholas
Holyoak, Keith J.
description The human ability to flexibly reason using analogies with domain-general content depends on mechanisms for identifying relations between concepts, and for mapping concepts and their relations across analogs. Building on a recent model of how semantic relations can be learned from nonrelational word embeddings, we present a new computational model of mapping between two analogs. The model adopts a Bayesian framework for probabilistic graph matching, operating on semantic relation networks constructed from distributed representations of individual concepts and of relations between concepts. Through comparisons of model predictions with human performance in a novel mapping task requiring integration of multiple relations, as well as in several classic studies, we demonstrate that the model accounts for a broad range of phenomena involving analogical mapping by both adults and children. We also show the potential for extending the model to deal with analog retrieval. Our approach demonstrates that human-like analogical mapping can emerge from comparison mechanisms applied to rich semantic representations of individual concepts and relations.
doi_str_mv 10.1037/rev0000358
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2648903149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2738605775</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-3cc88216d9cb97b97ef0d7773e432e1a9d1eed0aad5c45af93faf34148ecc5c3</originalsourceid><addsrcrecordid>eNp90FFL3TAUB_AgG3p39cUPMAp7kUFn0iRN8ja5uE1wU_SCvoXT9NTF9bY1aTfut1_K1Q32sHBIIPz4w_kTcszoB0a5Og34k6bDpd4jC2a4yZlQ7BVZpD-eF0beH5A3MT7OiBmzTw645NooJhbk43XoK6h86-PoXXbWQds_eAdt9hWGwXcP2Z0fv2e3uIFuBjfYwuj7LvuG468-_IiH5HUDbcSj53dJ1p_O16sv-eXV54vV2WUOgqkx585pXbCyNq4yKg02tFZKcRS8QAamZog1BailExIawxtouGBCo3PS8SU52cUOoX-aMI5246PDtoUO-ynaohTaUM6ESfTdP_Sxn0JaLCnFdUmlUvK_qpS00Omes97vlAt9jAEbOwS_gbC1jNq5fPu3_ITfPkdO1QbrP_Sl7QTyHYAB7BC3DkLqtMXophCwG-cwywpjZcpWmv8GB2KOWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650282659</pqid></control><display><type>article</type><title>Probabilistic Analogical Mapping With Semantic Relation Networks</title><source>MEDLINE</source><source>EBSCOhost APA PsycARTICLES</source><creator>Lu, Hongjing ; Ichien, Nicholas ; Holyoak, Keith J.</creator><contributor>Grigorenko, Elena L</contributor><creatorcontrib>Lu, Hongjing ; Ichien, Nicholas ; Holyoak, Keith J. ; Grigorenko, Elena L</creatorcontrib><description>The human ability to flexibly reason using analogies with domain-general content depends on mechanisms for identifying relations between concepts, and for mapping concepts and their relations across analogs. Building on a recent model of how semantic relations can be learned from nonrelational word embeddings, we present a new computational model of mapping between two analogs. The model adopts a Bayesian framework for probabilistic graph matching, operating on semantic relation networks constructed from distributed representations of individual concepts and of relations between concepts. Through comparisons of model predictions with human performance in a novel mapping task requiring integration of multiple relations, as well as in several classic studies, we demonstrate that the model accounts for a broad range of phenomena involving analogical mapping by both adults and children. We also show the potential for extending the model to deal with analog retrieval. Our approach demonstrates that human-like analogical mapping can emerge from comparison mechanisms applied to rich semantic representations of individual concepts and relations.</description><identifier>ISSN: 0033-295X</identifier><identifier>EISSN: 1939-1471</identifier><identifier>DOI: 10.1037/rev0000358</identifier><identifier>PMID: 35389714</identifier><language>eng</language><publisher>United States: American Psychological Association</publisher><subject>Adult ; Analog ; Analogy ; Bayes Theorem ; Bayesian analysis ; Child ; Computational Modeling ; Concepts ; Female ; Graph theory ; Human ; Human Information Storage ; Humans ; Learning ; Machine Learning ; Male ; Mapping ; Mathematical models ; Prediction ; Probability ; Retrieval ; Semantic Networks ; Semantics</subject><ispartof>Psychological review, 2022-10, Vol.129 (5), p.1078-1103</ispartof><rights>2022 American Psychological Association</rights><rights>2022, American Psychological Association</rights><rights>Copyright American Psychological Association Oct 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-3cc88216d9cb97b97ef0d7773e432e1a9d1eed0aad5c45af93faf34148ecc5c3</citedby><orcidid>0000-0001-8010-6267 ; 0000-0002-0928-0809 ; 0000-0003-0660-1176</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35389714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Grigorenko, Elena L</contributor><creatorcontrib>Lu, Hongjing</creatorcontrib><creatorcontrib>Ichien, Nicholas</creatorcontrib><creatorcontrib>Holyoak, Keith J.</creatorcontrib><title>Probabilistic Analogical Mapping With Semantic Relation Networks</title><title>Psychological review</title><addtitle>Psychol Rev</addtitle><description>The human ability to flexibly reason using analogies with domain-general content depends on mechanisms for identifying relations between concepts, and for mapping concepts and their relations across analogs. Building on a recent model of how semantic relations can be learned from nonrelational word embeddings, we present a new computational model of mapping between two analogs. The model adopts a Bayesian framework for probabilistic graph matching, operating on semantic relation networks constructed from distributed representations of individual concepts and of relations between concepts. Through comparisons of model predictions with human performance in a novel mapping task requiring integration of multiple relations, as well as in several classic studies, we demonstrate that the model accounts for a broad range of phenomena involving analogical mapping by both adults and children. We also show the potential for extending the model to deal with analog retrieval. Our approach demonstrates that human-like analogical mapping can emerge from comparison mechanisms applied to rich semantic representations of individual concepts and relations.</description><subject>Adult</subject><subject>Analog</subject><subject>Analogy</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Child</subject><subject>Computational Modeling</subject><subject>Concepts</subject><subject>Female</subject><subject>Graph theory</subject><subject>Human</subject><subject>Human Information Storage</subject><subject>Humans</subject><subject>Learning</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Mapping</subject><subject>Mathematical models</subject><subject>Prediction</subject><subject>Probability</subject><subject>Retrieval</subject><subject>Semantic Networks</subject><subject>Semantics</subject><issn>0033-295X</issn><issn>1939-1471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90FFL3TAUB_AgG3p39cUPMAp7kUFn0iRN8ja5uE1wU_SCvoXT9NTF9bY1aTfut1_K1Q32sHBIIPz4w_kTcszoB0a5Og34k6bDpd4jC2a4yZlQ7BVZpD-eF0beH5A3MT7OiBmzTw645NooJhbk43XoK6h86-PoXXbWQds_eAdt9hWGwXcP2Z0fv2e3uIFuBjfYwuj7LvuG468-_IiH5HUDbcSj53dJ1p_O16sv-eXV54vV2WUOgqkx585pXbCyNq4yKg02tFZKcRS8QAamZog1BailExIawxtouGBCo3PS8SU52cUOoX-aMI5246PDtoUO-ynaohTaUM6ESfTdP_Sxn0JaLCnFdUmlUvK_qpS00Omes97vlAt9jAEbOwS_gbC1jNq5fPu3_ITfPkdO1QbrP_Sl7QTyHYAB7BC3DkLqtMXophCwG-cwywpjZcpWmv8GB2KOWg</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Lu, Hongjing</creator><creator>Ichien, Nicholas</creator><creator>Holyoak, Keith J.</creator><general>American Psychological Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7RZ</scope><scope>PSYQQ</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8010-6267</orcidid><orcidid>https://orcid.org/0000-0002-0928-0809</orcidid><orcidid>https://orcid.org/0000-0003-0660-1176</orcidid></search><sort><creationdate>20221001</creationdate><title>Probabilistic Analogical Mapping With Semantic Relation Networks</title><author>Lu, Hongjing ; Ichien, Nicholas ; Holyoak, Keith J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-3cc88216d9cb97b97ef0d7773e432e1a9d1eed0aad5c45af93faf34148ecc5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adult</topic><topic>Analog</topic><topic>Analogy</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Child</topic><topic>Computational Modeling</topic><topic>Concepts</topic><topic>Female</topic><topic>Graph theory</topic><topic>Human</topic><topic>Human Information Storage</topic><topic>Humans</topic><topic>Learning</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Mapping</topic><topic>Mathematical models</topic><topic>Prediction</topic><topic>Probability</topic><topic>Retrieval</topic><topic>Semantic Networks</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Hongjing</creatorcontrib><creatorcontrib>Ichien, Nicholas</creatorcontrib><creatorcontrib>Holyoak, Keith J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>APA PsycArticles®</collection><collection>ProQuest One Psychology</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>MEDLINE - Academic</collection><jtitle>Psychological review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Hongjing</au><au>Ichien, Nicholas</au><au>Holyoak, Keith J.</au><au>Grigorenko, Elena L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic Analogical Mapping With Semantic Relation Networks</atitle><jtitle>Psychological review</jtitle><addtitle>Psychol Rev</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>129</volume><issue>5</issue><spage>1078</spage><epage>1103</epage><pages>1078-1103</pages><issn>0033-295X</issn><eissn>1939-1471</eissn><abstract>The human ability to flexibly reason using analogies with domain-general content depends on mechanisms for identifying relations between concepts, and for mapping concepts and their relations across analogs. Building on a recent model of how semantic relations can be learned from nonrelational word embeddings, we present a new computational model of mapping between two analogs. The model adopts a Bayesian framework for probabilistic graph matching, operating on semantic relation networks constructed from distributed representations of individual concepts and of relations between concepts. Through comparisons of model predictions with human performance in a novel mapping task requiring integration of multiple relations, as well as in several classic studies, we demonstrate that the model accounts for a broad range of phenomena involving analogical mapping by both adults and children. We also show the potential for extending the model to deal with analog retrieval. Our approach demonstrates that human-like analogical mapping can emerge from comparison mechanisms applied to rich semantic representations of individual concepts and relations.</abstract><cop>United States</cop><pub>American Psychological Association</pub><pmid>35389714</pmid><doi>10.1037/rev0000358</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-8010-6267</orcidid><orcidid>https://orcid.org/0000-0002-0928-0809</orcidid><orcidid>https://orcid.org/0000-0003-0660-1176</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0033-295X
ispartof Psychological review, 2022-10, Vol.129 (5), p.1078-1103
issn 0033-295X
1939-1471
language eng
recordid cdi_proquest_miscellaneous_2648903149
source MEDLINE; EBSCOhost APA PsycARTICLES
subjects Adult
Analog
Analogy
Bayes Theorem
Bayesian analysis
Child
Computational Modeling
Concepts
Female
Graph theory
Human
Human Information Storage
Humans
Learning
Machine Learning
Male
Mapping
Mathematical models
Prediction
Probability
Retrieval
Semantic Networks
Semantics
title Probabilistic Analogical Mapping With Semantic Relation Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A45%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20Analogical%20Mapping%20With%20Semantic%20Relation%20Networks&rft.jtitle=Psychological%20review&rft.au=Lu,%20Hongjing&rft.date=2022-10-01&rft.volume=129&rft.issue=5&rft.spage=1078&rft.epage=1103&rft.pages=1078-1103&rft.issn=0033-295X&rft.eissn=1939-1471&rft_id=info:doi/10.1037/rev0000358&rft_dat=%3Cproquest_cross%3E2738605775%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2650282659&rft_id=info:pmid/35389714&rfr_iscdi=true